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Abstract

Microspeakers can overheat and break if not monitored and regulated. This mon-
itoring is usually done by adding a pilot tone that introduces energy to the signal.
A problem with this approach is the slow update rate of the temperature estimate.
This in combination with a fast temperature rise could result in an audible regula-
tion of the input. By simulating the voice coil temperature these problems could
be mitigated. In this thesis, two existing grey box models and one novel black box
model are estimated for different speakers and evaluated using different signals.
The results are promising and indicate that all models can estimate the voice coil
temperature with a mean error below one degree. The tests show that a correct
initialization of the model is crucial. Therefore the suggestion to Cirrus Logic,
who hosted this thesis project, is to combine a feedforward model with either
temperature sensor data from the mobile device or a pilot tone.
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Sammanfattning

Mikrohögtalare kan överhettas och gå sönder ifall temperaturen inte övervakas
och regleras vid behov. Denna övervakning sker med hjälp av en pilotton som
tillför energi till högtalarens insignal. Ett problem med denna lösning är att över-
vakningen är relativt långsam. Detta gör att en snabb temperaturökning kan ge
en oönskad hörbar reglering av insignalen. Genom att modellera spolens tempe-
ratur kan detta problem hanteras. I detta examensarbete tas två fysikaliska mo-
deller och en konfektionsmodell fram och testas på olika högtalare och signaler.
Resultaten är lovande och visar att alla modeller kan skatta spoltemperaturen
med ett medelfel under en grad. Utvärderingen visar att initiering av modellens
starttemperatur är viktig. Därför är förslaget till Cirrus Logic att kombinera en si-
muleringsmodell som initieras med antingen temperatursensordata från mobilen
eller med hjälp av en pilotton.
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Notation

Abbreviations are presented in the order they are found in the thesis.

Abbrevation Meaning

V voltage
P power
x displacement of membrane
T temperature
Rtot total resistance of the loudspeaker circuit
α thermal conductivity parameter
Tvc voice coil temperature
Ta ambient temperature
∆Tvc change in voice coil temperature
Re voice coil resistance
PRe power dissipated in the voice coil
Fs resonance frequency
i current
Z impedance response
R1 thermal resistance of the voice coil
R2 thermal resistance of the magnet
C1 thermal capacitance of the voice coil
C2 thermal capacitance of the magnet
θ model parameters
ε(t, θ) difference between the predicted and measured temperature
ŷ(t | θ) predicted model temperature
y(t) measured temperature
V (θ) cost function
n number of samples

xi



xii Notation

Abbrevation Meaning

θ̂ optimal model parameters
v velocity of the membrane
na Model C order parameter, number of past output terms
nk Model C order parameter, input delay
N number of partitions for Model C
β input to the regression vector
f (x) scaling function
g(x) wavelet function
R projection matrix
Q projection matrix
K column vector
r mean value of the regressor vector
d offset
as scalar model parameters for the wavelet function
aw scalar model parameters for the wavelet function
bs scalar model parameters for the wavelet function
bw scalar model parameters for the wavelet function
cs row vector for the wavelet function
cw row vector for the wavelet function
Nr number of regressors
U (k, l) energy in the frequency domain
k lower frequency limit
l upper frequency limit
f frequency
σ vector used when creating the regressor input vector to Model C
ς vector used when creating the regressor input vector to Model C
Nf length of the frequency vector
a curve function parameter
β̄(t) mean energy of all partitions
L curve function deciding partition length of Model C
χ a normalised length vector
R0(Ta) the voice coil resistance at the ambient temperature
εval mean absolute error for the validation data
εest mean absolute error for the estimation data
εmax maximum absolute error for the validation data
εinit mean absolute error for the chosen model parameters
εchanged mean absolute error for the changed model parameters



1
Introduction

A microspeaker is a small speaker that primarily is used in smart phones and
tablets. The temperature of the voice coil in these speakers can rise rapidly dur-
ing operation, causing damage to the components of the microspeaker and even
function failure. To avoid this, it is important to measure the temperature of
the voice coil so that the input to the microspeaker can be regulated to keep the
temperature within its operational range. One way to achieve this is to add a
low frequency pilot tone and measure the impedance over the speaker circuit.
The voice coil temperature can be estimated from the impedance measurement,
since the resistance of the metal in the voice coil is temperature dependent. This
method has two drawbacks: the pilot tone adds unnecessary energy which heat
up the voice coil and the observation rate is slow in the regulation system and
in combination with a fast temperature rise this can lead to an unwanted audi-
ble regulation of the input signal. This thesis investigates three different thermal
models that are supposed to predict the voice coil temperature instead of measur-
ing it.

1.1 Background and motivation

The smart phone market has grown for several years and is now a multi-billion
industry with several large businesses competing for market shares [Marketline,
2015]. This competition has resulted in products that demand a high level of
technology at a low cost, such as faster mobile processors and high resolution
screens. A recent focus in these devices is the sound quality and being able to
play as loud as possible. This has been achieved by using a boosted amplifier to
increase the signal to the speaker, leading to a larger input power. However, this
can cause overheating since these small speakers often have a lower power rating
than the amplifier.
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2 1 Introduction

This problem is solved by monitoring the voice coil temperature and regulating
the input signal before the voice coil starts to overheat. For this to work, the voice
coil temperature has to be measured. As mentioned above, one method to find
the voice coil temperature would be to add a pilot tone and measure the momen-
tary impedance. Another similar method is to measure the impedance without
a pilot tone. The impedance is then measured over a frequency interval where
there usually is frequency content. One disadvantage with this method is that
the measurements can get noisy if there is limited frequency content in the mea-
sured interval. The second method has the same drawback as the first method
concerning the slow observation rate in the regulation system.

The issues created by measuring the voice coil temperature could be mitigated
if a feedforward model could be found, which is able to estimate the tempera-
ture based on the speaker input signal. This could result in cheaper loudspeaker
circuits if the model performs well enough and removes the need for the mea-
surement of the impedance.

1.2 Related works

The usual way of modelling loudspeakers is by dividing the speaker into an elec-
tromechanical model and a thermal model. Figure 1.1 shows that the electrome-
chanical model is temperature dependent and how the thermal model depends
on the electromechanical model for its input, see Klippel [2004] for more infor-
mation.

1.2.1 Electromechanical models

The electromechanical model describes the electromechanical characteristics of
a loudspeaker and was first introduced in the 1970s by Small [1972] and Thiele
[1971]. It was the first successful model of the operation of a loudspeaker and this
linear model was later developed into the well-known Thiele/Small parameters.
This model has later been improved to include nonlinearities in the loudspeaker
function, see Andersson [2008]. According to Klippel [2004], there are some non-
linearities in the electromechanical model that could affect the thermal model.
For example the power over a cold voice coil is several times higher for lower
frequencies than a linear electromechanical model can explain. This could alter
the results of the thermal model in a negative way, since the calculated power is
used as an input to the thermal model.

An increasing speaker temperature alters the Q-factor of the loudspeaker, which
changes the appearance of the transfer function of the electromechanical model.
According to Andersson [2008], the Q-factor is defined as a ratio of the voice
coil resistance to the motional reactance of the resonance frequency of the loud-
speaker membrane. Using this characteristics, Pedersen and Rubak [2007] made
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Electromechanical Model 

Thermal Model

Voltage V

Power P Temperature T

Displacement x 

Figure 1.1: A diagram showing the relationship between the thermal and
the electromechanical model. The temperature T is calculated in the ther-
mal model from the power P , which is calculated from the input voltage V
and the temperature T in the electromechanical model. Here, the output x
denotes the displacement of the loudspeaker membrane.

use of FIR filters to find the electromechanical model parameters during opera-
tion. Furthermore, they mention that this could be used to estimate the voice coil
temperature. Andersson [2008] used this approach but adds an adaptive filter to
estimate the voice coil temperature. However, the results were not conclusive and
measurement errors were held accountable. These methods require both voltage
and current measurements, which are not always available in practice.

1.2.2 Thermal models

The thermal model describes how the input power is converted to heat and how
that heat is transfered between the speaker components [Henricksen, 1986]. In
this model, the heat transfer processes are modelled by thermal equivalent re-
sistances and capacitances. This kind of model is known as a lumped-element
model, see Chapman [1998] for more information.

The model is often simplified to two RC submodels, where all parallel heat trans-
fer mechanisms are lumped together as one thermal resistor and capacitor for
the voice coil and the magnet [Button, 1992, Zuccatti, 1990], respectively. Behler
and Bernhard [1998] expanded this model with an extra RC submodel for the
cabinet of the speaker and proposed a method to estimate the parameters of the
model. Chapman [1998] improved the model further by moving out the capaci-
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tance from the RC submodel. This results in that simulations are accurate with
an error between 0.7 and 2◦C depending on the type of speaker.

According to Klippel [2004], the previously mentioned linear models do not ac-
count for the forced cooling due to the movement of the speaker membrane. A
nonlinear lumped elements model, which includes this and some additional ef-
fects was proposed and tested by Klippel [2004]. In the same year, Blasizzo [2004]
published a model where the forced convection and eddy currents were consid-
ered.

1.3 Contributions and results

In order to examine if a feedforward model is able to estimate the voice coil tem-
perature, three different models will be compared and analysed. The common ap-
proach in earlier work in thermal modelling has been to draw conclusions from
how different thermal processes affect the speaker and based on those observa-
tions create a thermal equivalent circuit model. In this thesis, two of these grey
box models will be compared with a nonlinear black box model. This approach
differs slightly from most well-known papers on the subject, since the usual way
is to use physics-based models. Another difference is the focus on microloud-
speakers, because most studies on thermal modelling have been done on regular
loudspeakers. The following models have been implemented in this thesis.

Model A is a linear grey box model similar to the one proposed by Chapman
[1998] and Model B is a nonlinear grey box model with the structure suggested
by Klippel [2004]. Both these models are supposed to give an accurate descrip-
tion of the voice coil temperature. The black box model, Model C, is a NARX
model where the input vector is the energy of the voltage in different frequency
intervals. In an ordinary music signal the energy is mostly concentrated at the
lower frequencies. Therefore, these frequency intervals will have a varying size
in accordance with this behaviour.

Finding the model parameters will be done in two steps. First temperature data
from experiments will be collected using the pilot tone approach. The model
parameters are then estimated using the collected temperature data and system
identification. This is done by minimizing the error between the experimental
data and the model prediction of the voice coil temperature. Comparison of the
three models will be done with different kinds of music and speech signals. Music
is considered the main use of a speaker and the estimation of the model parame-
ters will therefore be made on music.

Some limitations were considered such that the Master's thesis project could fit
the time schedule. The thesis will focus on the comparison of thermal models.
Therefore no electromechanical model will be implemented. The input to the
thermal model will instead be calculated using the current and the temperature
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dependent voice coil resistance. Here, calculations will be done off-line with no
defined limitation of the computational power. In a commercial product this
will have to be further examined since the computational power is limited in
the devices using microspeakers. Therefore the thermal models will not be im-
plemented in a commercial device during the time of the Master's thesis. The
thermal effect caused by eddy currents in the speaker where power bypasses the
voice coil and directly heats the magnet will not be considered.

1.4 Cirrus Logic Sweden AB

Opalum was founded by Pär G. Risberg in 2007, an alumni from the Applied
Physics and Electrical Engineering programme at Linköping University. The
company’s sound processing technology made it possible to create thin active
loudspeakers with high sound qualities that otherwise were reserved for larger
loudspeakers. After creating their flagship speakers Opalum started to look upon
the smart phone market and how to improve the sound and durability of micros-
peakers in smart phones. This resulted in both speaker protection, distortion
reduction and other improvement algorithms for microspeakers.

In 2015, the American sound company Cirrus Logic acquired the Opalum sound
technology and their software office in Stockholm. Cirrus Logic was founded
1984 and provides both software and hardware solutions for audio components
used in smart phones, tablets and other audio applications. The company is now
based in Austin, Texas and has offices in Europe and Asia with around 1,100 em-
ployees in total. Cirrus Logic’s Stockholm office is now working on a consumer
platform for their software while at the same time creating new algorithms for
speaker protection and better sound quality.

1.5 Thesis outline

In Chapter 2 the function and the components of the microspeaker are explained.
A short introduction is given about thermal effects and processes and how they af-
fect speakers. This is concluded with highlighting nonlinear thermal effects that
have been observed in speakers.

In Chapter 3, the three different models are introduced. This is done by giving
a theoretical background of the models and discussing how the models can be
implemented. The concepts of grey box modelling, lumped elements models and
black box modelling will be touched upon.

Chapter 4 shows the results of the three different models for estimation and
validation data. The models' sensitivity are analysed by perturbing the model
parameters. Model behaviour is analysed at different ambient temperatures and
the model initialization is discussed.
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In Chapter 5 a short summary of the result is given and a comparative discus-
sion about the performance is made about the different thermal models. This
discussion will result in some ideas how to continue with these models and how
they could be used by Cirrus Logic. After this, some general conclusions about
the accomplishments of the thesis are given.



2
Microspeakers and their properties

This chapter provides an explanation of how a microspeaker works and clarifies
the function of the speaker components. Different thermal processes that appear
in loudspeakers are discussed and their effects according to previous research
and experiments are presented.

2.1 The microspeaker components and function

The microspeaker (or micro-loudspeaker) is according to Bright [2002] a small
and thin loudspeaker that is often used in smaller electronic devices such as
tablets and smartphones. These microspeakers are very similar to larger loud-
speakers and the main difference is the size. A cross section of the microspeaker
and its components is presented in Figure 2.1.

A microspeaker is a transducer that creates sound waves from electrical power.
The core concept is that a current runs through a voice coil that is situated in
a magnetic field. This creates a force that pushes the diaphragm (also called a
membrane), which moves the air around the speaker and creates sound pressure.
The membrane is also fixed to the frame and there is a magnetic circuit that di-
rects the magnetic field from the speaker magnet [Bright, 2002].

This transduction from voltage to sound pressure is inefficient. Only about 5%
of the energy is converted to sound. The remaining energy becomes heat that
spreads through the components in the speaker. Speaker failure can therefore
occur as too much heat leads to degradation of the materials and the adhesives
inside the microspeaker [Henricksen, 1986, Button, 1992].

7



8 2 Microspeakers and their properties

(1) Voice coil (2) Diaphragm (4) Frame(5) Suspension

(6) Magnetic circuit(7) Ventilation (3) Magnet (8) Magnetic field

Figure 2.1: A cross-section of a microspeaker.

2.2 Thermal properties

When heat is generated in a speaker it spreads between the different elements of
the loudspeaker according to the five thermal processes, conduction, radiation,
natural and forced convection and thermal storage [Henricksen, 1986].

Conduction transfers heat from a hot source to a colder sink through a physical
path. In the microspeaker, heat is conducted from the voice coil to the adjacent
parts during operation. Behler and Bernhard [1998] explain that the voice coil
is the largest source of heat in the speaker. This heat is caused by the resistance
of the voice coil when electrical power surges through it. The conduction takes
place in the air gap between the voice coil, the magnet and the magnet circuitry.
The heat is then dissipated to the ambient air through the frame, the magnet or
the membrane.

Heat transfer from radiation occurs when a body loses energy through electro-
magnetic emission. This effect increases with higher temperature. However, this
effect is minor below 150◦C according to Henricksen [1986] and Zuccatti [1990].
The working temperature of a microloudspeaker is below 100◦C. Therefore, the
radiation effect in microspeakers is insignificant.

At lower frequencies the loudspeaker membrane motion forces air and heat from
the speaker to the ambiance through the ventilation holes. Hence, the membrane
acts as a bellow and pumps air in and out of the speaker. This is called forced
convection and can be seen as a frequency dependent cooling factor [Klippel,
2004]. The cooling factor is the decrease in temperature that occurs because of
the forced convection. Henricksen [1986] detects a 5◦C cooling factor for a 100◦C
warm voice coil in a subwoofer speaker. He also notices that the cooling factor
increases with an increasing membrane velocity. There is also natural convection
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which is the airflow created when hot air rises. Klippel [2004] concludes that
in speakers this effect depends on the membrane position since this changes the
amount of air surrounding the voice coil.

Thermal storage is the thermal process occurring when an object gets warmer.
This means that the temperature of the object will rise when heat is added. The
heat will be stored in the object if a heat transfer effect does not dissipate it. In
the microspeaker the main components of interest are the voice coil and the mag-
net. The magnet is interesting because it is the largest thermal reservoir with the
capacity to store a lot of thermal energy and dissipating it slowly. The voice coil
is interesting because it has a small capacity for storage of thermal energy and
therefore dissipates it faster.

The ability of the loudspeaker element to shed and gain heat is called the ele-
ment’s thermal resistance. This thermal resistance describes the change in tem-
perature when heat is added to the element. It is often calculated as ◦C / W
[Henricksen, 1986].

Power compression is a temperature dependent process but not a thermal one.
When a constant voltage is applied to a micro-speaker, the temperature will start
to rise and the input power will be reduced with the increased temperature. The
end result is that the power compression becomes an extra safety against over-
heating. As can be seen in Figure 2.2, the change in temperature ∆Tvc is smaller
at higher temperatures. Therefore, the input power must be larger to result in
the same temperature change when the voice coil is warmer. The input power P
is calculated as

P = Re(Tvc)i2, (2.1)

where, Re(Tvc) denotes the temperature dependent voice coil resistance and i de-
notes the current applied to the speaker. According to Henricksen [1986], the
power compression effect is audible when a cold speaker is supplied with a high
power input signal. The volume will then decrease over time as the speaker gets
warmer.

2.3 Nonlinear thermal effects

Klippel [2004] calculates the total thermal resistance of the speaker as

Rtot = ∆Tvc /PRe, (2.2)

where PRe denotes the power dissipated in the voice coil and ∆Tvc is the change
in voice coil temperature. He concludes that Rtot varies up to 60% depending
on the input signal when comparing contemporary music with high bass content
against an a cappella song. The high bass content in the former piece leads to
cooling of the voice coil through forced convection. This forced convection de-
pends on the velocity of the speaker membrane or rather how much air that is
moved by the membrane. A higher velocity therefore gives a higher airflow and



10 2 Microspeakers and their properties

0 50 100 150 200 250 300
time (sec)

0

2

4

6

8

10

12

14

16

18

20

ch
an

ge
in

te
m

p
er

at
u
re
"

T

Power compression at di,erent ambient temperatures

20 degrees
50 degrees

Figure 2.2: The change in temperature when applying the same input sig-
nal for two different ambient temperatures: 20 degrees (blue solid) and 50
degrees (orange dashed).
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more cooling of the voice coil. As mentioned in Section 2.2 the forced convection
is frequency-dependent. The velocity of the speaker membrane is highest when
the frequency of the input signal is close to the resonance frequency Fs, as can
be seen in Figure 2.3. An experiment was carried out to show the cooling down
effect of the forced convection, see Figure 2.4. This is something that is not con-
sidered in traditional linear thermal modelling of loudspeakers.

The natural convection can be decreased because of amplitude compression of ve-
locity and membrane displacement. The excursion of the membrane gets smaller
at higher frequencies as can be seen in Figure 2.5. However, Klippel [2004] con-
sidered the effect of this decreased convection as negligible in comparison to the
forced convection.

Another nonlinear effect is that the input power to the thermal model is depen-
dent on the impedance response of the loudspeaker. When calculating the cur-
rent, which has to be done if the current can not be observed and measured, in
the power equation (2.1) the impedance response is used in the following way

i(t, f , T ) = V (t)
1

Z(f , T )
. (2.3)

Here, i(t, f , T ) denotes the current, V (t) denotes the input voltage and Z(f , T )
denotes the impedance response [Chapman, 1998]. This response can also vary
because of non-linearities in the driver [Klippel, 2004]. Since, the input power
is calculated by the electromechanical model as can be seen in Figure 1.1, this is
beyond the scope of this thesis and the current is instead measured.
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quency. This results in a high membrane excursion and a cooling effect on
the voice coil.
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3
Thermal modelling

This chapter presents the implementation and estimation of three different ther-
mal models: lumped element models, grey box models and black box models.

3.1 Grey box modelling and lumped element models

According to Ljung and Glad [2004], there are two basic principles of how to
model systems. The first principle is to create subsystems using the knowledge
about the system and natural laws, such as Kirchhoff’s and Ohm’s laws. The sec-
ond basic principle is to use identification to select the model parameters using
observations from the system. The concept of grey box modelling make use of
both these principles.

Ljung and Glad [2004] also mention the analogies between different physical do-
mains. For example, capacitance in a electrical system is similar to the thermal
storage in a thermal system. The thermal analogy for electrical resistance is heat
resistance or thermal resistance as mentioned in Section 2.2. The idea that differ-
ent physical domains have systematic similarities results in the conclusion that
a thermal system can be treated as an electrical system with different variables
and parameters. Henricksen [1986] made use of this idea to model the thermal
processes in a loudspeaker as a thermal equivalent of an electrical circuit. This
kind of model is called a lumped element model [Chapman, 1998].

Three models, Models A, B and C are investigated in this thesis. Both Mod-
els A and B are lumped element models but also grey box models, as they are
built upon physical relations. Model A is a linear model and Model B is a linear
parameter-varying Model. This makes model B nonlinear across time, but linear
at every singular time instance.

15



16 3 Thermal modelling

3.1.1 Model A

The linear model in Figure 3.1 was created from the circuit suggested by Chap-
man [1998]. Here, the thermal resistance denoted by R1 and the thermal capac-
itance denoted by C1 are the thermal elements of the voice coil element in the
speaker. The thermal resistance for the magnet is denoted by R2 and the ca-
pacitance is denoted by C2. The thermal equivalent of the current is the power
denoted by P and the equivalent change in voltage is the change in temperature.
The change in voice coil temperature denoted by ∆Tvc is given by ∆Tvc = Tvc − Ta.
Here Tvc denotes the temperature of the voice coil and Ta denotes the ambient
temperature around the speaker. Analogously, ∆Tm denotes the change in tem-
perature for the magnet.

This model is based upon a earlier thermal model of the voice coil temperature
described by Henricksen [1986], Zuccatti [1990] and Button [1992]. Both models
are very similar, the difference is the positioning of the resistances and the capac-
itances as shown in Figure 3.2.

The s-plane transfer function for the change in voice coil temperature ∆Tvc for
Model A is given by

∆Tvc =
R1 + R2 + s(R1R2C2)

1 + s(R1C1 + R2C1 + R2C2) + s2(R1C1R2C2)
P . (3.1)

The implementation of Model A is done by mapping the s-plane transfer function
from the Laplace domain to the discrete equivalent z-plane. This mapping is
done using Tustin's method. A digital filter is created from the mapped transfer
function. The output of this filter is the simulated temperature ŷ(t | θ), were θ
are the model parameters, R1, C1, R2 and C2. The input is the calculated power
P in (2.1). This leaves us with an output error problem given by

ε(t, θ) = y(t) − ŷ(t | θ), (3.2)

where ε(t, θ) denotes the difference between the measured temperature y(t) and
the simulated temperature ŷ(t | θ). Let us introduce a cost function given by

V (θ) =
1
n

n∑
t=1

ε2, (3.3)

where n denotes the number of samples in the observation. The optimal model
parameters θ̂ can be estimated by minimizing the cost function using a nonlinear
solver. These parameters are then used when validating the model. With optimal
model parameters the model should be able to simulate the system's behaviour.

3.1.2 Model B

Model B, which is a nonlinear model, was created from the circuit shown in Fig-
ure 3.3. As can be seen this is very similar to the linear model except for the
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R1 R2

C1 C2

Ta

ΔTvc ΔTm

P

Figure 3.1: The linear thermal circuit model used for Model A [Chapman,
1998]. The power P will flow into the thermal capacitance C1 of the voice
coil. With an increasing temperature over the voice coil, the power will start
to flow to the magnet thermal capacitance C2 through the voice coil thermal
resistance R1. When the magnet starts to heat up, the power left will flow
through the magnet thermal resistance R2 to the ambiance Ta.

R1 R2

C1 C2

Ta

ΔTvc ΔTm

P

Figure 3.2: Linear thermal circuit model suggested by Henricksen [1986],
Zuccatti [1990] and Button [1992]. Comparing this circuit with Figure 3.1,
the different positioning of C1 and C2 is evident.
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Rtc(v)

R1

C1 C2ΔTvc ΔTm

P

R2

Ta

Figure 3.3: The nonlinear thermal circuit model used for Model B [Klippel,
2004]. The diffence between this model and Chapman [1998] is the forced
convection variable Rtc(v). This thermal resistance changes depending on
the velocity of the membrane and therefore makes the model nonlinear.

component Rtc(v). This component is supposed to capture the forced convection
of the speaker and is calculated by

Rtc(v) =
1
vφ

. (3.4)

Here, v denotes the root mean squared value of the velocity of the speaker mem-
brane and φ denotes a constant parameter. The length of the root mean square
window was 5512 samples or 0.125s, the same as the downsampled temperature
observation. The velocity of the membrane v is calculated from the measured ex-
cursion of the membrane. To reduce measurement noise in the excursion signal,
a short moving average filter was applied in a preprocessing step. The implemen-
tation of Model B is different from Model A. Instead of using a filter and the trans-
fer function, the circuit is modelled directly using Simulink™. This means that
the thermal circuit in Figure 3.3 was implemented as a circuit in the Simulink™
environment and the result is shown in Figure 3.4. This model outputs the sim-
ulated temperature ŷ(t | θ) with the model parameters R1, C1, R2, C2 and the
forced convection parameter φ. The estimation of the model parameters is done
in the same way as for Model A, by minimising (3.3). The model parameters θ in
Model A and Model B represent the same physical relations with the exception
of the extra model parameter φ which does not exist in Model A.

3.2 Black box modelling

Black box models describe only the relation between the input and output of a
system. This is done by observing the system and optimising the parameters of
a generalised model to fit the system. This approach differs from grey box mod-
els because it does not use the physical characteristics of the system. However,
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Figure 3.4: The Simulink™ implementation of Model B.

according to Ljung and Glad [2004] the generalised models can be adjusted such
that information about the system characteristics can be utilised.

3.2.1 Model C

Model C is a nonlinear autoregressive model with exogenous input and it is pre-
sented in Figure 3.5. The idea behind this model is that the temperature change
of the voice coil depends on the frequency content of the input, which can be
described by

ŷ(t) = F(ϕ(t)) (3.5)

where,

ϕ(t) = [ŷ(t − 1), . . . , ŷ(t − na), β(t − nk , 1), β(t − nk , 2), . . . , β(t − nk , N )]. (3.6)

Here, ŷ(t) denotes the simulated temperature of the voice coil y(t). Furthermore,
ϕ(t) denotes the regression vector determined by the orders na, nk and the num-
ber of partitions N . The input to the regression vector is denoted by β and will be
explained in detail later. The remaining part of the regression vector is already
simulated values ŷ(t − 1), . . . , ŷ(t − na). The model nonlinearity is defined as

F(ϕ(t)) = (ϕ(t) − r)RK + asf (bs((ϕ(t) − r)Q − cs))
+ awg(bw((ϕ(t) − r)Q − cw)) + d

(3.7)
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Regressors Nonlinear 
function

Linear
function

β(t)

y(t-1),...,y(t-na),β(t-nk,1),...,β(t-nk,N)
y(t)

Figure 3.5: A representation of Model C where the input β is the energy
in different frequency ranges and ŷ(t) is the predicted temperature. The
nonlinearity is a wavelet function described in (3.7) and the linear function
is an ARX model.

where

f (x) = e0.5xx>

g(x) = (Nr − xx>)e0.5xx> .
(3.8)

Here, f (x) denotes a scaling function, g(x) denotes the wavelet function, R and Q
denote projection matrices composed using principal component analysis of the
estimation data. Furthermore, K denotes a column vector, r denotes the mean
value of the regressor vector calculated from the estimated data, d denotes an
offset and is together with as, aw, bs, and bw scalar model parameters and cs and
cw denote row vectors. Finally, Nr denotes the number of regressors.

When the model was estimated, a prediction problem was solved instead of a
simulation problem. The difference is that the earlier temperature values in the
dataset are known to the solver and not predicted. This means that when estimat-
ing the model, the regression vector contains the observed temperature values
and the input: y(t − 1), . . . , y(t − na), β(t − nk , 1), β(t − nk , 2), . . . , β(t − nk , N ) and
with this information ŷ(t) is predicted. The model parameters are optimised us-
ing the nonlinear least squares method.

The input to this model is the voltage over the speaker u(t) after pre-processing.
Here, the voltage input is split into short time intervals that are 5512 samples
long or 0.125s long when using a sample frequency of 44100. The mean energy
of the input in a particular frequency interval is given by the discrete Fourier
transform and Parseval’s theorem as

U (k, l) =
1

Nf − (k + l)

Nf −1−l∑
k

|F (u(t))|2, (3.9)

where k denotes the lower frequency limit, l denotes the upper frequency limit,
F denotes the discrete Fourier transform and Nf is the length of the frequency
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vector. The data calculated by the Fourier transform is the voltage input u(t)
for each short time interval. The energy U (k, l) is partitioned N times resulting
in the regressors β(t − nk , 1), . . . , β(t − nk , N ), where each partition quantifies the
mean energy of a specific frequency range decided by k and l. Partitions are made
shorter at low frequencies and then increase in size exponentially because the en-
ergy in music is often centered around low frequencies.

This is done by creating a vector σ with N values. These values are set to 1/N .
Another vector ς is calculated by multiplying

ς = σL(χ) (3.10)

where,
L(χ) = (aχ − 1)/(a − 1) (3.11)

and
χ = 1/N , 2/N , . . . , N /N. (3.12)

Here, a denotes the curve parameter and χ denotes a vector with length N . The
curve L is seen in Figure 3.6. ς is then normalised by dividing the vector values
with the sum of all vector values. After this step the ς vector is multiplied with
the length of the frequency axis given by the discrete Fourier transform. The val-
ues in this new vector are rounded of to the closest integer. Some manipulation
is now made ensuring that the combined length of the partitions matches the
length of the frequency axis. First a check is made if the combined length of the
partitions is shorter or longer than the Nyquist frequency and depending on that
outcome, one is added to or removed from one of the partitions. That partition
is chosen based upon where one added or removed sample makes the least dif-
ference from the vector before it was discretised. After this step, all partitions
are checked if they have a zero value. If that is the case, the partition with the
largest value is decreased by one and this value is added to the partition with the
zero value. All this creates a vector that defines the parameters k and l. That in
turn defines the frequencies that each partition quantifies the mean energy over.
When the partitions vector is created, β(t − nk , 1), . . . , β(t − nk , N ) can be calcu-
lated for an input signal by calculating the mean energy over each partition and
its specific frequency range. The different lengths of the partitions can be seen in
Figure 3.7.

The custom partition length is decided by choosing the number of partitions N
and a curve parameter a. These parameters are optimised with the help of an in-
put signal to the loudspeaker. Pink noise was chosen as an input signal because
it excites all frequencies up to the Nyquist frequency and it is similar to music in
its construction. This noise is created by filtering white noise with a −3dB slope
low-pass filter. Then, a nonlinear solver is used to calculate the optimal value for
the parameter a for those choices by minimizing the cost function V given by

V =
1
N

n∑
t=1

N∑
k=1

|β(t, k) − β̄(t)|2 (3.13)
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and

β̄(t) =
1
Np

N∑
k=1

β(t, k). (3.14)

Where, β̄(t) is the mean energy over all partitions. When the optimal value of a
has been chosen by the solver the input vector β(t − nk , 1), . . . , β(t − nk , N ) can be
calculated for any input signal.
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Figure 3.6: The length curve L for the parameter value a = 47.3. This curve
decides the specific frequency range for each partition β(t − nk , N ). The
change value is the value of the length curve and decides the length of the
different partitions.
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Figure 3.7: The accumulated partition length for a = 47.3. Each partition
quantifies the energy over a specific frequency range. The partitions are
shorter in the lower frequencies and this is because most of the energy in
music is situated in those frequencies.





4
Comparing and validating thermal

models

This chapter presents the performance of the three models and some details
about the experimental setup are discussed. A sensitivity analysis is made to
see how the ambient temperature and parameter changes alter the performance
of the models.

4.1 Experimental setup and pilot tone

Experimental temperature data was measured using the pilot tone approach and
the equipment listed in Appendix 5. In the pilot tone approach, the resistance
of the voice coil is calculated by measuring the voltage and current in a small
frequency area determined by the pilot tone. For every period of the pilot tone
the root mean square value of the current and the voltage is used to calculate the
resistance of that time period. The temperature can be estimated by using the
fact that the voice coil resistance is temperature dependent,

Re(Tvc) = R0(Ta)(1 + α ·∆Tvc). (4.1)

Here, Re(Tvc) denotes the temperature dependent resistance of the voice coil,
R0(Ta) denotes the resistance at the ambient temperature Ta, α denotes the tem-
perature coefficient of the voice coil material and ∆Tvc denotes the difference in
temperature from the ambiance. The thermal parameters R0(Ta) and α were esti-
mated by heating the microspeakers to different temperatures and measuring the
resulting resistance. With this information, the parameters of the linear function
were calculated by a polynomial fitting function [Polyfit function]. Three speak-
ers were tested in the sensitivity analysis, two smaller microspeakers (Speaker 1
and 2) and one slightly larger (Speaker 3), see Figure 4.1. The thermal param-
eters for the three speakers are presented in Table 4.1. The frequency of the
pilot tone was chosen so the phase shift between the current and the voltage was

25
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Figure 4.1: The three different speakers that were used in the sensitivity
analysis. Speaker 1 was used for the remainder of the results.

close to zero. For Speakers 1 and 2, a 40Hz sine waves was selected and a 10Hz
sine wave was selected for the third Speaker. These sine wave were implemented
with −30dB smaller amplitude than the maximum amplitude of the signal. The
idea was that this should result in a minimal impact on the temperature of the
speaker by adding as little energy as possible. Another reason why the pilot tone
was chosen at 40Hz is that the membrane of a microspeaker does not move for
frequencies below 100Hz. Therefore no forced convection should be created by
this added tone. The temperature of the voice coil was estimated for every period
of the pilot tone.

The input power is calculated by measuring the current and using the temper-
ature dependent resistance of the voice coil (4.1). The power is then calculated
as

P = Re(Tvc)i2. (4.2)

The temperature value in Tvc in the power equation is initialized using the first
observed temperature value. After the initialization the value is calculated by the
thermal models.

A laser was used to measure the excursion of the speaker membrane. For Speak-
ers 2 and 3 this was straightforward but the cabinet surrounding speaker 1 was
closed and the membrane therefore not visible. Instead a custom-made speaker
cabinet with a small hole in the cabinet was used, so that the membrane was visi-
ble and measurable, see Figure 4.1. The velocity of the membrane was calculated
using the excursion data. This velocity signal is used as an input to Model B and
its forced convection resistance Rtc(v). A 10 sample long mean average filter was
applied to the velocity signal because it was noisy. After this a root mean square
window with a length of 5512 samples was applied to the velocity signal.
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4.1.1 Downsampling

Most of the experimental data was collected with a sample rate of 48kHz. The
data was downsampled to a frequency of 8Hz since the thermal system is signif-
icantly slower. When downsampling, an anti-alias filter was used to minimize
aliasing effects. The mean of the power and the membrane velocity were calcu-
lated for the previous 48, 000/8 = 6, 000 samples.

4.2 Comparison method

Three kinds of input signals were used when comparing Models A, B and C. The
first kind was contemporary music with a large amount of bass. This modern mu-
sic should excite the membrane and give a high membrane velocity resulting in
forced convection. The second kind was jazz and classical music. Here, the bass
is not so dominating and there is a larger amount of higher frequencies compared
with contemporary music. Speech was the last kind of input signal. This signal
has a lot of pauses but also high excursion since speech is similar to pulse trains.
The speech signals were recorded from video blogs and talk shows. Estimation of
the three models was done using two songs from the contemporary category and
two songs from the classical/ jazz category. Validation of the models was done on
all three kinds of input signals. The mean model error, see (3.2), will be the basis
of the comparison between the different models and the different kinds of input
signals. When calculating the mean model error for several songs, the total sum
of the absolute error for all songs is divided by the total length of all songs. Other
important metrics for comparison are the largest error, the bias and the variance
of the error both with respect to time and temperature.

4.3 Model comparison

Table 4.2 summarises the different input signals that have been used for the esti-
mation and the validation. Songs number 1, 3, 5 and 6 were used for estimation
for all models. The remaining songs in the different music categories are used for
validation and the main focus of the estimation was to create an accurate model
primarily for different kinds of music. Therefore, there are no speech signals
among the estimation datasets as they could affect the model parameters in an
undesirable way.

4.3.1 Model parameters

When estimating Models A and B, the nonlinear solver was executed until one of
two stopping criteria was reached. One of these criteria is the function tolerance
which stops the solver if the change in the goal function is smaller than a set
value. The second stopping criterion is the step tolerance. This stops the solver
if the step size of the solver becomes smaller than a set value. For both criteria
the values were set to 10−12. Estimation of the models was repeated several times
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Table 4.1: Thermal parameters for Speaker 1, 2 and 3.

R0(Ta = 20◦C) α

Speaker 1 7.7157 0.0033
Speaker 2 6.4007 0.0035
Speaker 3 4.0662 0.0037

Table 4.2: Signals used for estimation and validation.

Number Name Artist/composer Type

1 My funny valentine Bill Evans Jazz
2 Misty Ray Bryant Jazz
3 Morgenstemning Edvard Hagerup Grieg Classical
4 Copenaghen steam... H. C. Lumbye Classical
5 Our Song Taylor Swift Contempory
6 Let em riot Magnatron Contempory
7 Dancing in the dark Bruce Springsteen Contempory
8 Xmas in Rio iamMANOLIS Contempory
9 Doin it right Daft Punk Contempory
10 S.H.I.T. advice 2 2kliksphilip Speech
11 Charlie day almost... Conan on TBS Speech
12 Swedlog Anderzel Speech
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with different initial parameters to minimize the chance of converging to a local
minimum. This resulted in the model parameters presented in Table 4.3 The
partition function of Model C was estimated using a pink noise signal and N was
set to 20 to limit the amount of model parameters. Then the partition function
was used when deciding the input to the NARX model. This resulted in the model
parameters in Table 4.4.

4.3.2 Case 1: Contemporary music

Songs number 7, 8 and 9 were used for validation for the contemporary music.

This gave the results presented in Table 4.5 where ε̄val = 1
n

n∑
t=1
|ε| denotes the mean

absolute error for validation data. Furthermore, εmax denotes the maximum abso-
lute value of the error ε for the validation data and ε̄est denotes the mean absolute
error for estimation data. The simulated outputs for the different models show
promising results, see Figure 4.2. However, some characteristics in the data need
further discussion. In Figure 4.3, the bias of ε is slightly increasing with increas-
ing temperature. However, this increase in bias is rather small and the variance
is too large to conclude that there is a trend in the data. The errors for Model A
and B, see Figure 4.4, seem to be normally distributed around a positive number.
The error of Model C seems not to be normally distributed but rather skewed to
the positive side for the contemporary music.

4.3.3 Case 2: Classical music and jazz

Song number 2 and 4 were used for validation for the classical and jazz music.
This gave the results presented in Table 4.6. Figure 4.5 shows the main reason for
the poor result. Song number 2 seems difficult to predict as all three models have
problem coping. Song number 4 had a low error when analysed separately. No
good reason has been found for why the result is so different for song number 2 in
comparison to all other songs. The only noticeable difference between this song
and the others is that the recording is rather noisy.

4.3.4 Case 3: Speech

Song number 10, 11 and 12 were used for validation for the speech case. This
gave the results presented in Table 4.7. Figure 4.7 shows the results for song
number 10. This is a promising result since the models have not been estimated
on speech signals. A common attribute of the speech signals is that the temper-
ature has not been excited to levels above 35◦C. Speech contains many small
pauses and therefore the microspeaker is constantly switching between heating
and cooling. The histogram of the error, Figure 4.6, shows that the error seems
normal distributed around a rather small bias, even for Model C. This has not
been true for the other kinds of signals where Model C often has been skewed.
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Table 4.3: Model parameters for Model A and Model B. The model parame-
ters R1, R2, C1, C2 and φ are described in Sections 3.1.1 and 3.1.2.

R1 R2 C1 C2 φ

Model A 45.0786 23.6721 0.0448 1.0251
Model B 47.5992 23.3024 0.0466 1.1803 1.574710−6

Table 4.4: Model parameters for Model C. The model parameters na, nk , N
and a are described in Section 3.2.1.

na nk N a

Model C 10 3 20 47.34

Table 4.5: Model performance for contemporary music.

ε̄val εmax ε̄est

Model A 0.474 1.903 0.138
Model B 0.461 2.152 0.127
Model C 1.076 3.767 0.674

Table 4.6: Model results for classical music and jazz.

ε̄val εmax ε̄est

Model A 0.8274 3.491 0.319
Model B 0.868 4.542 0.331
Model C 0.8511 4.070 0.613

Table 4.7: Model results for speech signals.

ε̄val εmax

Model A 0.114 0.595
Model B 0.147 1.183
Model C 0.704 2.154
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Figure 4.2: Simulated and measured temperature for Models A (upper), B
(middle) and C (lower) for song number 9.
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ŷ
)
an

d
7
(y
!

ŷ
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Figure 4.3: The bias and standard deviation for ε for Models A (upper), B
(middle) and C (lower) for song number 9 with respect to the temperature.
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Figure 4.4: Histogram for the error ε for Models A (upper), B (middle) and
C (lower) for song number 9.
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Figure 4.5: Simulated and measured temperature for Models A (upper), B
(middle) and C (lower) for song number 2.
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Figure 4.6: Histogram for the error ε for Models A (upper), B (middle) and
C (lower) for song number 10.
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Figure 4.7: Simulated and measured temperature for Models A (upper), B
(middle) and C (lower) for song number 10.
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4.3.5 Comparison of model results

Including all the three cases gives the results shown in Table 4.8. These results
show that Models A and B have similar performance and that the results of Model
C are slightly worse in comparison. One single song, song number 2, gave the
particularly bad maximum error and if this song is excluded from the results
the maximum error of Model A and B is lowered to 1.5 and 2.1 , respectively,
while model C is still around 4. When comparing Model A and B the difference
between the two models is the forced convection parameter in Model B. This
seems not to have had any impact on the results. We return to discuss this finding
later. The result of Model C must be analysed with the model input taken into
account. For example, with increasing temperature the measured current will
change according to the power compression factor and affect the input power to
Model A and B. The input voltage, however, will stay the same. Therefore, Models
A and B are given more information about the system than Model C. That could
be one reason why Model C gives slightly worse results than the other two models.
In the case of Model A, the performance of the model agrees with the results in
Chapman [1998] with the exception of song number 2. Contrary to what have
been found here, Model B should give better results than Model A according to
Klippel [2004]. We return to discuss this difference later.

4.4 Sensitivity analysis

The sensitivity analysis tests the three models in different scenarios. The stability
is tested by changing different parameters one by one and observing the result
on the validation data. The model range was tested by changing the ambient
temperature around the speaker and observing the model results. Finally, the
three models were estimated and implemented for two other speakers, shown
in Figure 4.1. This was done to see if the result of the models would vary if
implemented on different speakers.

4.4.1 Model parameters

The stability of the three models was tested in two different ways. Model A and
Model B were tested by switching the model parameters one by one. The initial
parameters were the same as in Section 4.3. For Model A, the parameters R1, R2,
C1 and C2 were shifted with a proportional change from the initial value. The
change was made in positive and negative steps of 1, 5, 10, 25, 50 percent from
the original value. Since Model B is similar to Model A with the exception of
φ, only values of φ were changed. The result presented is the ratio between the
initial and the changed mean absolute error in percentage, calculated as

ε̄init

ε̄changed
, (4.3)

where ε̄init denotes the mean absolute error of the initial parameters and ε̄changed
denotes the mean absolute error for the model with the changed parameters. The
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error was calculated for all validation songs. This gave the results in Table 4.9.
When comparing the thermal resistance parameters against the thermal capaci-
tance parameters, the former result in a bigger change of the mean error. This is
probably because the initial values of R1 and R2 are numerically larger than the
values of C1 and C2 and therefore the overall change of the model is larger. The
φ parameter gives a better result when the value is reduced. Smaller values of φ,
gives the forced convection resistance less impact on the model output, showing
that the extra parameter in Model B could be unnecessary or badly implemented.

For Model C, the changes to the model were either to model order na or the num-
ber of partitions N . The result was calculated in the same way as above with the
initial values na = 10 and N = 20. The partitions were changed from 8 to 32 and
the orders from 5 to 15. The results are presented in Table 4.10. These results
indicate that Model C is stable and that small changes to the model parameters
do not change the overall performance of the model significantly.

4.4.2 Ambient temperatures

When simulating the different models, the initialisation was done by taking the
first observed temperature value and using it as the ambient temperature for the
model. This made sure that the model simulation started with the same initial
temperature as the observation. The estimation of the model was made at ambi-
ent temperatures ranging from 20 to 25 ◦C. A heat box was used when heating
the speaker to different ambient temperatures ranging from 20◦C to 50◦C with
temperature steps of 10◦C. At every new ambient temperature song number 6
was played and the voice coil temperature was observed for the loudspeaker. The
results for the different ambient temperatures are presented in Table 4.11 when
initialising the simulation with the first observed temperature value. The errors
are higher than expected and a look at Figure 4.8 shows that the Model A and
B underestimates the temperature. It also shows that the initial temperature is
not 50◦C but 47◦C. Therefore the ambient heating of the speaker continues dur-
ing the playing of the song. This seems to be a problem in most of the ambient
temperature test. The expected result was that the model should have overesti-
mated the temperature because of the power compression. This effect was not
observed, perhaps because of the problem with the continued ambient heating of
the speaker during the playing of the song. Figure 4.9 shows what happens when
the model is initialised at room temperature but the ambient temperature is ac-
tually higher. As the models simulate the loudspeaker temperature they have
no knowledge of the prior temperatures and therefore the initialisation of the
model is very important. A bad initialisation will give a bias error for the whole
simulation.

4.4.3 Estimating model parameters on different speakers

Different speakers have different thermal properties. For example, the magnet
may differ in size or the thickness of the voice coil could lead to a different ther-
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Table 4.8: Model results for all signals.

ε̄val εmax ε̄est

Model A 0.422 3.492 0.234
Model B 0.431 4.542 0.236
Model C 0.882 4.070 0.642

Table 4.9: Sensitivity analysis on model parameters for Model A and Model
B. The result is the ratio between the initial and the changed mean absolute
error in percentage.

Change R1 C1 R2 C2 φ

−50% 15 63 28 83 109
−25% 27 89 46 98 105
−10% 50 98 71 101 102
−5% 69 100 84 101 101
−1% 93 100 97 100 100
0% 100 100 100 100 100
1% 107 100 103 100 100
5% 116 99 116 99 99
10% 83 98 124 97 98
25% 34 93 81 91 95
50% 16 83 41 81 90

Table 4.10: Sensitivity analysis on model parameters for Model C. The result
is the ratio between the initial and the changed mean absolute error in per-
centage. The rows are the change in orders and the columns are the change
in partitions.

orders na / partitions 8 14 20 26 32

5 92 92 99 94 93
8 89 98 102 104 97
10 92 101 100 98 92
12 97 99 87 95 85
15 98 112 86 89 94

Table 4.11: Modelling results for ambient temperature test.

ε̄val εmax

Model A 2.100 5.566
Model B 2.073 5.648
Model C 2.089 5.912
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Figure 4.8: Predicted temperature data for Models A (upper), B (middle) and
C (lower) for song number 6 and an ambient temperature of 50 degrees.



4.4 Sensitivity analysis 41

0 50 100 150 200 250 300
time (sec)

0

20

40

60

80

100

te
m

p
er

at
u
re

(/
C

)

Temperature prediction
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Figure 4.9: Predicted temperature data for Models A (upper), B (middle)
and C (lower) for song number 6 and an ambient temperature of 50 degrees.
The model initialization was done at room temperature. This is a rather
obvious result considering that the model simulates the system and has no
information about the actual temperature. However, the difference between
this and Figure 4.8 is important to notice.
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mal behaviour of the speaker. Therefore, the three models have been estimated
for two other speakers to find out how easy it is to estimate the model parameters.
The estimation of the models was done in the same way as for Speaker 1. One
difference from Speaker 1 is that the pilot tone for Speaker 3 is located at 10Hz
instead of 40Hz. The validation was done on the same songs as for Speaker 1.
This gives the results for Speaker 2 presented in Table 4.12, and the results for
Speaker 3 presented in Table 4.13.

The results are promising for Speaker 3 but poor for Speaker 2. This could be due
to that the estimation of the model parameters is caught in a local minimum or
that the models cannot explain the thermal behaviour of this speaker. Another
reason could be the thermal mass of the different speakers. Speaker 2 is similar
to Speaker 1 in size whereas Speaker 3 is larger. Hence, it seems that the speaker
size is not the reason for the worse performance for Speaker 2. However, Chap-
man [1998] tried three different sizes of loudspeakers and found that the model
accuracy is better when modelling a smaller speaker. This is not observed in this
thesis as the best result is observed in the largest speaker. One large difference be-
tween Chapman [1998] and this thesis is the input signal used for the estimation.
In this thesis ordinary music was used which is a nonstationary signal whereas in
the work of Chapman [1998] a pure sine wave signal was used.

4.5 Possible experimental errors

The calibration of the speakers is essential to get correct measurement data. How-
ever, the calibration is done by heating up the speaker using a heat box. The heat
box itself is supposed to be accurate but no testing was done to ensure this. Even
if the heat box is accurate, the time for the speaker to reach the ambient tempera-
ture in the speaker is uncertain. This leads to some uncertainty when calibrating
the speaker. Here, the speaker was heated for half an hour and it was assumed
that the temperature inside the speaker then was the same as the ambient tem-
perature in the heat box.

There is a difficult trade off to consider when using a pilot tone to measure the
temperature. The energy of the pilot tone must be sufficiently large so the tem-
perature is measurable but not so large that the result is affected. Hence, the pilot
tone level is set to a level that is dependent on the song where the tone is added.
Therefore the energy of the pilot tone is different for each song and this gives
noisy measurements sometimes.

The velocity signal was calculated from the excursion which was measured us-
ing a laser. This measurement was sampled so that the output of an input sine
looked like a classical sample and hold output of a sine wave. Efforts were made
to fix this by adding a mean average filter. This gave a better but still noisy result.
Another mean average filter was applied to the velocity signal to smooth it. This
could be a reason why the result of Model B is no better than Model A.



4.5 Possible experimental errors 43

Table 4.12: Modelling results for Speaker 2.

ε̄val εmax ε̄est

Model A 1.0074 5.4883 0.6477
Model B 1.0158 5.8531 0.6466
Model C 1.2224 8.0702 1.6771

Table 4.13: Modelling results for Speaker 3.

ε̄val εmax ε̄est

Model A 0.2087 1.4383 0.3624
Model B 0.2058 1.3830 0.3615
Model C 0.6027 2.4561 0.3721





5
Conclusions

Model A shows mixed results when simulating the voice coil temperature. The
mean error was low, below 0.5◦C for Speakers 1 and 3. The maximum error was
low, below 2◦C with the exception of Speaker 2 and song number 2 for Speaker
1. These are promising results when not considering the exceptions. If the excep-
tions are considered the results are a bit less promising, especially considering
the results from Speaker 2 where the error was higher than expected.

The extra forced convection parameter in Model B does not seem to improve
the results. The results are therefore similar to Model A. This could be because
of the noisy velocity signal or that the estimation algorithm gets stuck in a local
minimum. When estimating Model B, the initial parameters were the estimated
parameters from Model A. This could be a reason why the results of Model B are
not better than the results from Model A. Chapman [1998] uses a pure sine wave
when estimating Model A instead of music that was used in this thesis. When es-
timating Model A on music the model parameters will be affected by the forced
convection effect and adapt to that cool down factor. This would make it diffi-
cult for the nonlinear solver to find the optimal solution when trying to fit in the
forced convection effect in Model B as it already is accounted for in Model A.

Model C does not give as good results as the grey box models that are consid-
ered. However, the results are not fully comparable since the input to Model C
is different. Model C has the voltage as input when Model A and B have power
calculated from the current. With this in mind, the model gives more promising
results. However, when comparing the model complexity against the grey box
models there is no good reason why it should be used instead of them.

The sensitivity analysis shows that the models are not parameter sensitive but

45
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that knowing the initial temperature is important for the models to perform well.

The recommendation to Cirrus Logic is to use Model A and to initialise it us-
ing a pilot tone that then could be turned off. This would initialise the thermal
model in a correct way. If the model starts to predict a dangerously high temper-
ature, the pilot tone could be turned on again and correct the model if there has
been a drift of the simulated temperature. This would help with the latency of
the feedback and fast temperature changes which has been a problem for Cirrus
Logic. It would also use the pilot tone as little as possible. Model A should also be
combined with the electromechanical model so the power could be calculated by
the latter model. Some longer tests where the temperature reaches higher values
are also needed. In this thesis it has not been possible to prove any trends where
the variance or the bias has increased over time or temperature. The proposed
longer tests can be used to see if this is still correct when the system is exposed
with a higher excitation for a longer time period.

Another way would be to assume that only the voltage measurement is available.
This would require some temperature data from the mobile device where the mi-
crospeaker is installed. If a temperature sensor is present close to the speaker, this
could be used to measure the ambient temperature and to initialise the model.
This would also need further testing to see if the model is accurate enough and
that the initialisation of the model does not introduce a too large error.

The goal of the thesis was to investigate if a feed-forward thermal model could
be used to simulate the voice coil temperature. The results indicate that this is
indeed possible if the model is initialised at the correct temperature. Model A
performs best out of the three models and it seems that two RC-components are
sufficient for microspeakers which are not installed in a device. If installed in a
device, three RC-components could be needed to model the extra thermal mass.
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Appendix





A
Equipment and experimental setup

The experimental setup measures the voltage and the current over the speaker.
The excursion is also measured using a laser. The experimental setup can be seen
in Figure A.2. The equipment used for the experimental setup was:

• An ART SLA-1, 100 Watt amplifier.

• A NI USB-4431, 24-bit I/O-device with four analog input channels and one
analog output channel.

• A measurement circuit board for measuring the current and voltage over
the speaker.

• Several AAC-A micro speakers.

• A VT 4002, Vötsch Industrietechnik, heatbox with ±0.3◦C sensitivity.

• A Keyence LK-G37 laser.

Using the I/O device, a signal is sent to the amplifier, which is connected to the
measurement circuit board which in turn is connected to the speaker. From the
circuit board, the voltage and the current is measured and connected to the I/
O device. The laser is also connected to this device. Using this setup, measure-
ments have been collected with a sampling frequency up to 48kHz. The heatbox
was used when calibrating the pilot tone. A pilot tone with low voltage was run
through the speaker and the resistance of the speaker was measured for different
temperatures.
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Figure A.1: The experimental setup used in this thesis. The speaker is sit-
uated on the left and measured by the laser. The amplifier and the circuit
board is situated in the middle. The I/O device and the computer that col-
lects the measurements can be seen to the right.

Matlab script Ampli�er Circuit board Loudspeaker

Laser

I/O-device
signal signal signal signal

excursion

excursion
voltage
current

voltage
current

Figure A.2: A block scheme for the experimental setup and how the different
equipment interacts with each other.
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