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Göteborg, Sweden 2010



Modelling and Compensation of Nonlinear Loudspeaker
DAVID JAKOBSSON
MARCUS LARSSON

c©DAVID JAKOBSSON, MARCUS LARSSON, 2010

Master’s Thesis EX033/2010
Department of Signals and Systems
Chalmers University of Technology
SE-412 96 Göteborg
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Modelling and Compensation of Nonlinear Loudspeaker
Master’s Thesis in Systems, Control and Mechatronics
DAVID JAKOBSSON
MARCUS LARSSON
Department of Signals and Systems
Chalmers University of Technology

Abstract

The nonlinear response of the loudspeaker is a undesired phenomenon which pro-
duces audible distortion. The construction of the loudspeaker is a trade-off between
various factors and therefore makes it difficult to build a linear loudspeaker.

This work takes another approach to address this issue. By using digital signal
processing, the terminal voltage can be pre-distorted to compensate for the nonlinear
behavior and render the system input-output linear.

In order to compute a controller which achieves this, a model of the moving coil
loudspeaker was implemented. This model was made from the extended Thiele-
Small model. The theory of exact input-output linearization was used to compute
the control law from this model.

Since the control law assumes full-state feedback, a state estimator is used. Two
types of state estimators, a feed-forward based and a observer based, were computed
and analyzed. The feed-forward one simply uses the terminal voltage to estimate the
states of the loudspeaker and can therefore be implemented without sensors. The
observer one uses the theory of the unscented Kalman filter to estimate the states
using the terminal voltage and the current passing through the loudspeaker.

The simulation results showed that the loudspeaker can be rendered fully linear
assuming that the hardware does not limit the control signal and that the loudspeaker
model is perfect. Various simulation were done to simulate hardware limitation and
process noise. This resulted as expected, that the system was able to compensate for
the nonlinear behavior but its performance was still affected by the limitation and
the noise. The unscented Kalman filter proved to be more capable of estimating the
states than the feed-forward estimator when affected by process noise.

Keywords: Nonlinear loudspeaker, Active loudspeaker, Compensation, Input-output lin-
earization, Modelling, Feed-forward, Unscented Kalman filter
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Glossary

Loudspeaker
u Voltage at loudspeaker terminals
x State vector
x1 First state - Cone displacement (x)
x2 Second state - Cone velocity (ẋ)
x3 Third state - Terminal current (i)
x4 Forth state - Current through L2 (i2)
x Cone displacement
ẋ Cone velocity
i Terminal current
i2 Current flowing through L2

Re Voice coil resistance (DC)
Le Voice coil inductance
L2 Parainductance
R2 Eddy current resistance
Bl Force factor
Fm Reluctance force
Cms Suspension compliance
Rms Suspension mechanical resistance
Mms Diaphragm mechanical mass
M Diaphragm mechanical mass + air load
Tv Voice coil temperature

Controller
w Signal source
v Linear dynamics control signal
u Inverse dynamics control signal (Terminal voltage)
LD Linear dynamics
ID Inverse dynamics
x̂ Predicted state vector
z Transformed state vector

Observer
UKF Unscented Kalman filter
m State mean
P State covariance
Q Covariance of the process noise
R Covariance of the measurement noise
X Sigma points
µ Predicted mean
S Measurement covariance
C Cross-covariance
K Filter gain

Distortion
HD Harmonic distortion
THD Total harmonic distortion
IMD Intermodulation distortion
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Preface

In this thesis the nonlinear behavior of the moving coil loudspeaker has been studied and
a control law which achieves exact input-output linearization has been derived. As full
state-feedback is not applicable for the purpose of this system and as such, a observer
has been made which estimates the states based on the input to the loudspeaker and the
terminal current.
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1 Introduction

Since the invention of the moving coil loudspeaker in the 19th century, its principle physical
properties have remained the same. Improvements has been made but most often in types
of material usages. That development has led to that loudspeakers in the high fidelity
range has a delicate construction process and costly materials.

In recent years, more momentum has been put into understanding the dynamics of the
moving coil loudspeaker which is somewhat of a difficult task since it can be classified as
a nonlinear time-variant system [Kli06]. With that knowledge, the ways to improve the
loudspeaker has become clearer but still leave one to choose between, e.g. fidelity, safety,
size and expenses. This challenge has led to the more recent idea of the active loudspeaker,
i.e. using digital signal processing to compensate for the loudspeakers short-comings.

One of those short-comings is that the loudspeaker is a nonlinear system which in turn
produces unwanted distortion. This thesis will address this problem using digital signal
processing to compensate this nonlinear behavior.

1.1 Purpose

Loudspeakers behave differently in the small and large signal domain. This is due to the
nonlinear behavior of the loudspeaker which it inherits from its amplitude dependency.
The loudspeaker has therefore stronger nonlinear behavior when it is playing at higher
amplitudes. This nonlinear behavior does depend on the input stimulus, e.g. frequency,
amplitude and phase and should thus be understood as symptoms rather than a complete
descriptions of the large signal performance. Those symptoms can be seen as a integer
multiples of the fundamental frequency and are called harmonic (HD) and intermodulation
distortion (IMD). [Kli06]

As the human perception of sound waves is acknowledged as a nonlinear system, one
might wonder if a linear acoustic source is desired or necessary. Extensive studies can
be found regarding this subject, i.e. how humans perceive sound waves. The studies
shows that harmonic distortion does not sound all that bad. On the other hand, the
harmonic distortion is also the source of intermodulation distortion which is perceived as
an unpleasant artifact. [BNS+98]

Amplitude

Frequency

DC

Fundamental

HD2

HD3

IMD3

IMD2

Fundamental

IMD2

IMD3

0 f1 2f1 3f1

f2 − 2f1
f2 − f1

f2
f2 + f1
f2 + 2f1

Figure 1.1: A frequency spectrum demonstrating HD and IMD.

In Figure 1.1 it can be seen how the harmonic distortion for two tones affect each other,
which results in intermodulation distortion. Note that this is a simplification of the reality
and usually there are more than two harmonics distortion components present.
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The challenge, to compensate for this distortion, is to achieve input-output linear rela-
tionship between the loudspeaker cone movement and the input stimulus. Since a consumer
product is the ultimate goal, a system that achieves this need to be cheap and free of user
interaction. As this is the case, as much as possible need to be done using models and
feed-forward techniques and limit the use of expensive sensors.

1.2 Limitations

A few limitations was needed to fit the project to the time schedule. Firstly, it is known
that the loudspeaker is a time-varying system, which time dependency comes mostly from
the temperature of the voice coil. This is due to the fact that the loudspeaker has a
particular low efficiency, around 5%, where the rest of the energy will be dissipated as
heat. The other time-varying effect is due to aging and is a much slower process. This
work will not address these issues but will describe a few measures in the Chapter 7 to
overcome them. [Kli04]

This work will also mostly be limited to a simulation model to verify the observer
described later on. This is due to the process of the implementing a feedback loop in a
digital signal processor (DSP). The feed-forward based controller will though be tested
which will allow for verification of the control law together with the loudspeaker model.

This report will mostly address the loudspeaker model solely on the driver, or in other
words without enclosure, but since the closed box system is very similar to it, the report
will describe it shortly. In Chapter 3.1, it will be discussed briefly how the model needs to
be extended to include vented boxes.

1.3 Approach

The approach which was taken was to model the loudspeaker as a state-space system
in Simulink. The state-space model was made using extended Thiele - Small lumped
parameter model of the loudspeaker. This results in four states defined as the vector x
which are the following:

• x1 = x - The displacement of the cone

• x2 = ẋ - The velocity of the cone

• x3 = i - The current passing through the loudspeaker

• x4 = i2 - The current passing through the parainductance (L2) of the voice coil.

One should note the fundamental difference between the state vector x and the cone
displacement x. This notation will be used throughout the report and should not be
confused.

With the loudspeaker model in place, an exact input-output control law was derived
and applied. The control law is divided into two parts, the ID (Inverse dynamics) controller
and the LD (Linear dynamics) controller. The ID controller sees to that an exact input-
output linear behavior applies between its input and the displacement of the loudspeaker
cone and the systems linear dynamics can be tuned using the LD controller. This controller
requires a full-state feedback which need to be updated every time step. For this task, two
approaches were made, a feed-forward system and a observer based system.

The feed-forward system calculates the state variables by solely knowing the input u
which should make the system quite vulnerable to process noise but has the advantages of
simplicity and a sensor-free set-up.
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The observer based feed-forward system takes another approach. By measuring the
current i and knowing the input voltage u it can estimate the other three state variables
and allow for the controller to operate smoothly. The observer which was chosen to estimate
the state variables was the unscented Kalman filter. Block diagram of the observer based
system is shown below.

w

Controller

- LD -
v

ID
u

- ẋ = f(x) + g(x)u

Loudspeaker

-
x

�
x3

UKF

Observer

x̂
z = T(x̂)

6 6

?

Figure 1.2: A diagram of the observer based system.

, Signals and Systems, Master’s Thesis EX033/2010 3



2 Theory

This chapter aims to give the reader the needed knowledge to follow the methodology in the
upcoming chapters. It starts with an explanation of the basic principles of the moving coil
loudspeaker. This is followed by control theory regarding exact input-output linearization
and the last chapter is dedicated to the unscented Kalman filter.

2.1 Moving coil loudspeaker

A loudspeaker is a device used to convert a electric signal into acoustic waves. The moving
coil loudspeaker is, by far, the most common version. Figure 2.1 shows its cross section
with the consisting parts marked out.

Surround

Voice coil former

Dust cap

Diaphragm or cone

Frame or basket

Magnet

Voice coilPole piece

Top Plate

Spider

Figure 2.1: Cross section of the moving coil loudspeaker [Iai10].

The sound is created when the diaphragm moves. As can be seen, the diaphragm is
fixed to the surround in one end and to the spider and the voice coil former in the other
end. The function of the surround and the spider is to keep the diaphragm and the voice
coil centered in the frame as well as generating a restoring force which moves the voice coil
back into rest position. The voice coil is what sets the diaphragm into movement which
is done by applying an alternating current to the voice coil. Since it is positioned in a
permanent magnetic field, this will result in a force moving the voice coil and its former
as well as the diaphragm. [BX08]

The small signal behavior of a loudspeaker can be accurately modeled using linear
theory. For higher amplitudes, this is not the case, as all loudspeakers have nonlinearities
generating distortion not present in the input. The nonlinear behavior is a consequence of
the properties of the materials used in various parts of the loudspeaker. When constructing
a loudspeaker, these properties are a trade-off between e.g. cost, size, linear behavior and
sensitivity. [Kli06]

Below follows a short description of the major nonlinearities for low frequencies, as well
as the basic physical reasons for their presence.

Force factor Bl(x)
The electromagnetic conversion from electrical to mechanic energy is described by the
force factor Bl(x). Here B is the magnetic flux density in the gap and l is the effective
length of the voice coil wire in the gap. Obviously the force factor decreases when
the voice coil leaves the gap which makes the force factor displacement dependent.
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Voice coil inductance Le(x), L2 & R2

The inductance of the voice coil is also dependent on the voice coil displacement.
This is due to the surrounding material, which is air for the part of the voice coil
outside the gap and steel (which decreases magnetic resistance) for the part of the
coil inside the gap. The current in the voice coil is also causing a magnetic field
penetrating the magnet and iron introducing eddy currents which causes additional
losses.These losses are increasing with frequency and making a significant impact
from approximately 200 Hz depending on the loudspeaker used [RLRV10].

Suspension compliance Cms(x)
The suspension parts are usually made of rubber, impregnated fabric or polymer.
The suspension behavior is similar to a normal linear spring at small excursions but
increases quicker at larger excursions causing a nonlinear force dependent on the
voice coil displacement.

In addition to these three, there exists more nonlinearities affecting the output of a
loudspeaker such as the Doppler effect and break-up modes in the material which are only
in effect at higher frequencies. Additionally to those, there are also the port nonlinearity for
vented systems and material defects causing rub and buzz. Since this report is focused on
low frequency distortion for closed box loudspeakers and solo drivers, these nonlinearities
will not be described here but more information can be found, e.g. in [Kli06], [BH09] or
[Ped08].

2.2 Exact input-output linearization

Exact input-output linearization is a technique to transform a nonlinear SISO system into
a linear one by the means of a control law. This is done in two steps, firstly the nonlinear
system is transformed into a integrator decoupled system by the means of a state feedback.
Secondly, also by the means of state feedback the appropriate linear dynamics are chosen
with common linear control theory methods. [SSH96]

Consider the nonlinear SISO system given by the state-space representation

ẋ = f(x) + g(x)u

y = h(x)
(2.1)

where u is the input and y is the output. Exact input-output linearization refers to that
a control law is generated which achieves a linear differential relation between the output
y and a new input v. This is significantly different from and should not be confused with
”approximate” linearization where a linear approximation is found to a nonlinear function
at a given point. [Isi95]

The goal of the exact input-output technique is to transform the system with z = T(x)
into normal form which can be seen as a feedback law described below.

u = α(x) + β(x)v (2.2)

To explain this theory one must first understand the notion of Lie derivative and relative
degree [SSH96]. Considering the Lie derivative of h(x) along f(x) is defined as

Lfh(x) =
dh(x)

dx
f(x) (2.3)

Likewise, the Lie derivative of h(x) along g(x) is
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Lgh(x) =
dh(x)

dx
g(x) (2.4)

The time derivative of y as is described in equation 2.1 can be expressed with Lie
derivative notions as

ẏ =
dh(x)

dx
ẋ

=
dh(x)

dx
f(x) +

dh(x)

dx
g(x)u

= Lfh(x) + Lgh(x)u

(2.5)

Knowing that, the linearizing diffeomophism or as described earlier, the transformation
coordination can be put forth as follows

z = T(x) =



h(x)
Lfh(x) + Lgh(x)u

L2
fh(x) + LgLfh(x)u

...
Ln

fh(x) + LgL
n−1
f h(x)u

Ψ1
...

Ψn−r


(2.6)

The relative degree of the system is the smallest derivative of the function h(x) which
explicitly depends on the input u [SL91]. If the relative degree is smaller than the number
of states, Ψ can be chosen so that equation 2.7 holds [SL91].

LgΨ = 0 (2.7)

In case of a well defined relative degree, a control law which achieves a linear differential
relation between the output y and the input v can be calculated as

u = −
Ln

fh(x)

LgL
n−1
f h(x)

+
1

LgL
n−1
f h(x)

v

= α(x) + β(x)v

(2.8)

This is called the inverse dynamics, since it cancels both the linear and the nonlinear
dynamics of the system.

If the relative degree of the system is the same as the number of states, one has what
is called exact state linearization. This is an important case since this eliminate any zero
dynamics in the system. Zero dynamics are nonlinear dynamics affecting the state variables
which is not visible in the output. It is still possible to achieve feedback linearization even
though the relative degree is smaller than the number of state variables. One has to be
aware though, that the zero dynamics can be unstable and if left to grow unbound, it can
be harmful to the system. In practice the zero dynamics can be, if not stable, at least
controllable and therefore allows for the controller to work properly. [GL00]
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2.3 Unscented Kalman filter

The UKF is founded on the intuition that it is easier to approximate a probability distri-
bution than it is to approximate an arbitrary nonlinear function or transformation [JU04].

The unscented Kalman filter (UKF) is a novel idea to estimate the state variables of
a nonlinear system by calculating the mean. It belongs to a bigger class of filters called
Sigma-Point Kalman filters which make use of statistical linearization techniques. [Ter10]

It draws it’s name from the unscented transform which is a method for statistically
calculating a stochastic variable which goes through a nonlinear transformation. The non-
augmented UKF, which assumes additive noise, uses the unscented transformation to make
a Gaussian approximation to the nonlinear problem given as [Ter10]

xk = f(xk−1, k − 1) + qk−1

yk = h(xk, k) + rk
(2.9)

where xk is the state vector, yk is the measurement vector, qk−1 is the process noise and
rk is measurement noise defined as

xk ∈ Rn

yk ∈ Rm

qk−1 ∼ N(0,Qk−1)

rk ∼ N(0,Rk)

(2.10)

Like the Kalman filter, the UKF consists of two steps, prediction and update. Unlike
the Kalman filter though, the UKF makes use of so called sigma points which is used to
better capture the distribution of x. The mean values of that distribution will here be
indicated as m. The sigma points X are then propagated through the nonlinear function
f and the moments of the transformed variable estimated. [JS10]

For the non-augmented UKF a set of 2n + 1 of sigma points is used, where n is the
order of the states. Before going through the prediction and update steps the associated
weight matrices Wm and Wc need to be defined. This is done as follows

W (0)
m = λ/(n+ λ)

W (0)
c = λ/(n+ λ) + (1− α2 + β)

W (i)
m = 1/{2(n+ λ)}, i = 1, · · · , 2n

W (i)
c = 1/{2(n+ λ)}, i = 1, · · · , 2n

(2.11)

where W
(0)
m · · ·W (i)

m and W
(0)
c · · ·W (i)

c are column vectors for the weight matrices. The
scaling parameter λ is defined as

λ = α2(n+ κ)− n (2.12)

where α, β and κ are positive constants which can be used to tune the UKF by modifying
its weight matrices. The prediction and update steps can now be computed as follows:

• Prediction
The prediction step computes the predicted state mean m−

k and the predicted co-
variance P−

k by calculating the sigma points Xk−1
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Xk−1 =
[
mk−1 · · · mk−1

]
+
√
c
[
0
√

Pk−1 −
√

Pk−1

]
X̂k = f(Xk−1, k − 1)

m−
k = XkWm

P−
k = X̂kWc[X̂k]T + Qk−1

(2.13)

• Update
The update step computes the predicted mean µk, measurement covariance Sk and
the measurement and state cross-covariance Ck

X−
k =

[
m−

k · · · m−
k

]
+
√
c
[
0
√

P−
k −

√
P−

k

]
Y−

k = h(X−
k , k)

µ−
k = Y−

k Wm

Sk = Y−
k Wc[Y

−
k ]T + Rk

Ck = X−
k Wc[Y

−
k ]T

(2.14)

At last the filter gain Kk, the updated state mean mk and the covariance Pk are
computed

Kk = CkS
−1
k

mk = m−
k + Kk[yk − µk]

Pk = P−
k −KkSkK

T
k

(2.15)

As one could guess, initial values for the mean m and the covariance P need to be
chosen for the first run. Afterwards, the algorithm can simply be run iteratively.
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3 Modelling and compensation

This chapter aims to give an understanding of how a model is made of the moving coil loud-
speaker as well as explaining how the exact input-output linearization and state estimation
techniques was utilized to compensate for the distortion in the model.

This chapter is divided into the three basic components of the simulated system, namely

• The moving coil loudspeaker model

• The controller

• The state estimation

The moving coil loudspeaker model chapter explains how the model is derived from its
electrical equivalent circuit and then transfered into state-space form. It also explains the
nonlinear components of the model and how they vary with the cone displacement. The
controller chapter describes how the exact input-output theory is applied to the model and
how the performance of the controller can be tuned by varying some of its parameters.
The state estimation chapter explains how two different measures were taken to estimate
the current state of the loudspeaker. This includes the feed-forward technique and the
application of the unscented Kalman filter.

3.1 Moving coil loudspeaker model

A popular way to model loudspeakers is to use an electrical equivalent circuit. This model
and its parameters are named Thiele-Small after the two Australians who pioneered this
theory in the 1970’s [Thi71]. Those parameters are more or less industry standard nowadays
and are usually specified by transducer manufacturers.

More recently it has been accepted that the loudspeaker is a nonlinear system, where its
major nonlinearties depend on the cone displacement. In this chapter an explanations will
be given of how the loudspeaker model is derived from the extended Thiele-Small model
and how the major nonlinearties are modelled.

3.1.1 Model derivations

The original Thiele-Small model models the low frequency performance of the moving coil
loudspeaker. It is defined as a linear one which is sufficient to predict the small signal
behavior of the loudspeaker. In other words it is limited to when the cone displacement is
small. To use this model to predict the large signal behavior some changes has to be made
to include the nonlinear dynamics. An extended version of the Thiele-Small model where
the nonlinear dynamics have been taken into account, can be seen in Figure 3.1.

This circuit is only equivalent for the solo driver but to extend the model to include
a closed box is quite simple as the only parameter that needs to be changed is the mass.
For vented boxes this model needs to be extended to include the nonlinear dynamics of air
flow.

A LR-2 model was used to describe the eddy currents occurring at higher frequencies.
This can be seen in the circuit as the functions R2(x) and L2(x). This was chosen as it can
be easily implemented in the circuit and will therefore not cause problems later on when
synthesizing the controller. [DKOB04]

The dynamics of this circuit can more easily be described by dividing it into two parts,
the electrical and mechanical part. This can be seen in Figure 3.1 as the left side of the
converter Bl(x) and the right side respectively. The differential equations which describe
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u(t)

i(t)

Re(Tv) Le(x)
L2(x)

R2(x)

Cms(x)
M Rms

Fm(x, i, i2)
Bl(x)

i2(t)

ẋ(t)

Figure 3.1: The equivalent circuit of the moving coil loudspeaker.

the electrical part are described by equation 3.1 and 3.2, while equation 3.3 describes the
mechanical parts and equation 3.4 describes the reluctance force. [BH09]

u(t) = i(t)Re(Tv) +
d(Le(x)i(t))

dt
+
d(L2(x)i2(t))

dt
+Bl(x)

dx

dt
(3.1)

d(L2(x)i2(t))

dt
= (i(t)− i2(t))R2(x) (3.2)

Bl(x)i(t)− Fm(x, i, i2) = M
d2x

dt2
+Rms

dx

dt
+

x

Cms(x)
(3.3)

Fm(x, i, i2) ≈ −
i2(t)

2

dLe(x)

dx
− i22(t)

2

dL2(x)

dx
(3.4)

The reluctance force Fm(x, i, i2) as can be seen above, is here modelled as an approx-
imation. It drives the mechanical system directly and creates distortion in the full audio
band. Early on, it was a major driving-force of the moving coil loudspeaker but currently
it is considered an undesired effect which is kept as low as possible. [Kli06]

As the goal is to describe the model on a state-space form, those equations can be
solved for the derivatives of the states as seen below.

d2x

dt2
=

1

M

(
− x(t)

Cms(x)
−Rms

dx(t)

dt
+ i(t)

(
Bl(x) +

1

2

dLe(x)

dx
i(t)

)
+

1

2

dL2(x)

dx
i22

)
(3.5)

di

dt
=

1

Le(x)

(
−dx
dt

(
Bl(x) +

dLe

dx
i(t)

)
− i(t) (Re(Tv) +R2(x)) + i2R2(x) + u(t)

)
(3.6)

di2
dt

=
1

L2(x)

(
i(t)R2(x)− i2

(
R2(x) +

dL2(x)

dx

dx

dt

))
(3.7)

This gives that the choice of the states x is as follows

x =
[
x(t) ẋ(t) i(t) i2(t)

]T
(3.8)

Using equations 3.5 - 3.8 the system can be described with a nonlinear state space
equation of the form

ẋ = f(x) + g(x)u

y = h(x)
(3.9)

where y = h(x) specifies the output, which in this case is the cone displacement x1. Even
though equation 3.9 is nonlinear, it will be displayed here on the form

ẋ = Ax + bu (3.10)
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for convenience. Note though that the states x do appear in the matrices A and b. The
resulting loudspeaker model can be seen below.

ẋ =



0 1 0 0

−1

MCms(x)

−Rms

M

Bl(x) +
1

2

dLe(x)

dx
x3

M

1

2

dL2(x)

dx
x4

M

0
−Bl(x)− dLe(x)

dx
x3

Le(x)

−Re(Tv)−R2(x)

Le(x)

R2(x)

Le(x)

0 0
R2(x)

L2(x)

−R2(x)− dL2(x)

dx
x2

L2(x)


x +


0
0
1

Le(x)
0

u

(3.11)

3.1.2 Loudspeaker nonlinearities

It is generally accepted that the major nonlinearities of the loudspeaker is the force factor
Bl, the voice coil inductance Le and the compliance of the suspension Cms. There exists
other nonlinearties as well, which include the eddy current parameters R2 and L2 and DC
resistance of the voice coil which changes with the temperature Tv. The last one is though
considered slowly varying compared to the other which vary with the displacement of the
cone x1. The eddy current parameters R2 and L2 are also considered weak nonlinearities
in a loudspeaker without shorting-rings [DKOB04].

In order to simplify the model for the simulation, a few approximations have been made.
Although those approximations where used in the simulation, no approximations where
used when modelling the loudspeaker, synthesizing the controller or the state estimation.
In other words, some of the nonlinear functions seen in the entire system were approximated
as linear or constant in the simulation but are given as nonlinear in the equation. This
was done so that the model would be valid even if one would choose to explicitly define
the approximated functions as nonlinear.

The functions which were approximated were the eddy current parameters R2 and L2

and the temperature dependent DC resistance Re. Since the eddy current parameters
are weak nonlinearities they were here considered as constants as it was hard to get an
estimation of the nonlinear functions. Thermal effects in the loudspeaker are considered
significant for effective compensation of the its nonlinearities [Kli04]. Although interest-
ing factor, it was not thought to fit into the time scope of the project to model those
temperature dependencies. In the simulation the DC resistance Re is therefore consid-
ered as constant. The three major nonlinearities Bl, Le and Cms are considered to have
temperature dependency as well.

The popular way of modelling the major nonlinearities of the loudspeaker is to use
polynomial expansion. It does have some advantages namely, computational simplicity
and good approximation properties. The disadvantage is though that outside the fitted
range they do not fit well. The nonlinear functions for this project were obtained using
Klippel’s measurement service which returned a polynomial expansion fitted for a limited
range of displacement. Since these functions diverge quickly as mentioned above, it was
desired to find functions which would estimate nonlinear function better outside the fitted
range.[Age07]

Here follows a explanation of the kernel functions and the reasoning behind them.
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Force factor Bl(x)
As described in Chapter 2.1 the force factor should decrease rapidly when the voice
coil leaves the gap [Age07]. In other words, Bl should be at its maximum in the rest
position and then decay quickly as the magnet gap is not occupied with the voice coil.
One of the disadvantages of using a polynomial expansion to describe this curve is
that it easily gets negative values for large displacements. One solution to overcome
this and still have rapid decay outside the rest position is to use a Gaussian sum.
The Gaussian sum is described below.

Bl(x) =
N∑

n=1

αne
−

(x− xn)2

2σ2 (3.12)

and its derivative

Bl(x)

dx
=

N∑
n=1

αn
xn − x
σ2

e
−

(x− xn)2

2σ2 (3.13)

One should be careful when choosing the Gaussian sum parameters as a bad choice
can give a ”bumpy” fit for small displacement. To put it differently, it is not desirable
to have a curve which goes in waves for small displacement. Obliviously, it is still
not guaranteed that the force factor will not have negative values but one can easily
make sure of that since it happens before the function decays to zero. With the right
choice of parameters, the Gaussian sum makes a good fit of what one would expect
the behavior of the force factor to be outside the fitted range. A plot of the fitted
force factor can be seen in Figure 3.2.
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Figure 3.2: The force factor as a function of the displacement.
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Voice coil inductance Le(x)
As the other major nonlinearities, the voice coil inductance depends also on the dis-
placement of the cone. This is because of when the voice coil moves forward and
leaves the magnetic field, more of the coil is filled with air which reduces the in-
ductance [Age07]. In this case it is desired to have a function which has a negative
slope around rest position and should subside towards constant value for large dis-
placement. Obviously, a polynomial fit is a bad option here, since it decays towards
constant value on the x-axis. A mean to overcome this is to use a sigmoid function
as described below

Le(x) =
L1

1 + e−a(x−x0)
+ L0 (3.14)

and its first and second derivative

dLe(x)

dx
=

aL1e
−a(x−x0)

(1 + e−a(x−x0))
2 (3.15)

d2Le(x)

dx2
=

a2L1e
−a(x−x0)

(1 + e−a(x−x0))
2

(
2e−a(x−x0)

1 + e−a(x−x0)
− 1

)
(3.16)

This gives a very good fit to the desired values at large displacement. Another
advantage is that it is relatively simple and can be easily fitted. The resulting plot
of the voice coil inductance can be seen in Figure 3.3.
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Figure 3.3: The voice coil inductance as a function of the displacement.

Suspension compliance Cms(x)
Suspension compliance is somewhat different from the other major nonlinearities. It
is accepted that the three major nonlinearities depends also on the temperature of
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the voice coil, but in the case of the suspension compliance this is more of a significant
factor that for the other [Age07]. This can be explained by the fact that the heat of
the voice coil will spread via the spider to the suspension where it will change the
physical properties of the material. This temperature variations will though not be
considered in this project as stated above.

Similar to the force factor it was chosen to fit the suspension compliance with a
Gaussian sum. This is because it is expected that the function will have its peak
value close to the rest position and then decay rather quickly with the displacement,
especially in the negative direction. The Gaussian sum is stated here again for
convenience.

Cms(x) =
N∑

n=1

αne
− (x−xn)2

2σ2 (3.17)

Its derivative can be seen in equation 3.13. The resulting curve can be seen in Figure
3.4.
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Figure 3.4: The suspension compliance as a function of the displacement.

The method used to fit those nonlinearities to their desired function was the lsqcurvefit
function in Matlab. This algorithm solves the nonlinear curve-fitting problem in least-
squares sense and makes for an efficient way to fit the curves to the desired values.

3.2 Controller

The function of the controller is to compensate for the nonlinear behavior of the loudspeaker
and thus render the system linear. A few approaches have been tried in the past to do
exactly this [Kli03]. Here it was chosen to use the theory of exact input-output linearization
since it promise to give a very good results given correct feedback [SSH96].
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The exact input-output linearization control law is divided into two parts, the linear
dynamics (LD) and the inverse dynamics (ID). Assuming full state feedback, the control
law can be represented by the block diagram in Figure 3.5. The LD and the ID block are
described by equations 3.18 and 3.29 respectively.

w

Controller

- LD -
v

ID
u

- ẋ = f(x) + g(x)u

Loudspeaker

-
x

6 6

Figure 3.5: A diagram of the system assuming full state feedback.

As described in Chapter 2.2, calculating the control law for the inverse dynamics is
simply done by taking the derivative of the function h(x) until it explicitly depends on the
input u. Doing that, the control law for the inverse dynamics can be found and are shown
below.

u =

{
Mv +

x2
Cms(x)

(
1− x1

Cms(x)

dCms(x)

dx

)
+
Rms

M

(
−x1

Cms(x)
−Rmsx2 +

(
Bl(x) +

1

2

dLe(x)

dx
x3

)
x3 +

1

2

dL2(x)

dx
x24

)
− x2x3

dBl(x)

dx
− 1

2
x2x

2
3

d2Le(x)

dx2
− 1

2
x2x

2
4

d2L2(x)

dx2

− x4
L2(x)

dL2(x)

dx

(
R2(x)x3 −

(
R2(x)− x2

dL2(x)

dx

)
x4

)}(
Le(x)

Bl(x) + x3
dLe(x)

dx

)

+Bl(x)x2 + x2x3
dLe(x)

dx
+Rex3 +R2x3 −R2x4

(3.18)

Since it was needed to take the derivative of the function h(x) three times before u ap-
peared explicitly, it correspond to that the system has a relative degree of three. As the
nonlinear functions, Bl(x), Le(x) and Cms(x) are known and explicitly defined, finding
their derivatives is a simple task.

As the system has a relative degree of three, which is one less than the number of
states, it will results in that zero dynamics will be present in the system. Since this is
the case, it does make the linear dynamics control law a little less straightforward than
otherwise. To find the LD control law, the state parameters need to to be transformed
where one of the transformed states is the cone acceleration a and where it is possible to
get an understanding of the poles of the transformed system. This is done because it is
desirable to be able to choose the performance of the linear system.

Choosing the transformation is straightforward for the first three states but the forth
needs a little more consideration. First the associative state transformation is defined as

z =
[
x1 x2 ẋ2 Ψ

]T
(3.19)

where Ψ can be chosen freely as long as equation 3.20 holds [SL91].
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LgΨ = 0 (3.20)

This yields that

LgΨ =
1

Le(x)

∂Ψ

∂x3
= 0 (3.21)

Ψ can therefore freely be chosen as x4 for simplicity. The transformation will therefore be

z =


x1
x2
ẋ2
x4

 =


x
ẋ
ẍ
i2

 (3.22)

Carrying out the calculation, the new state vector z dependence on the former state
vector x can be seen below.

z1 = x1

z2 = x2

z3 =
1

M

(
−x1

Cms(x)
−Rmsx2 +Bl(x)x3 +

1

2

dLe(x)

dx
x23 +

1

2

dL2(x)

dx
x24

)
z4 = x4

(3.23)

The transformed state space can now be formulated and a new input w added. This is
shown in an convenient manner in equation 3.24. The parameters p1, . . . , p4 are approxi-
mate of how the ż4 depend on z. The function ż4 is though nonlinear and not additive and
will be stated for now as below for convenience and for simplicity.

More trivially, the parameters k1, . . . , k3 are some of the coefficients of the character-
istic polynomial of the desired linear system and can be chosen arbitrarily. How those
parameters are chosen will define the linear performance of the system.

ż =


0 1 0 0
0 0 1 0
−k1 −k2 −k3 −k4
p1 p2 p3 p4

 z +


0
0
1
0

w (3.24)

To understand the choices made for those poles, equation 3.25 is shown for explanation.

A =

[
A11 0
A21 A21

]
(3.25)

Since A11 is in phase variable canonical form in equation 3.24 the coefficients k1, . . . , k3
will define the poles for it. To get equation 3.24 in the same form as equation 3.25, k4 is
chosen as zero. This is necessary to have an understanding of the poles which define the
system. The last pole is the p4 since the poles of A11 and A22 define the poles of A in
equation 3.25.

To find the coefficients k1, . . . , k3 for the linear behavior, the loudspeaker model needs
to be linearized. This is a simple task where the nonlinear functions are replaced with
their values at rest position, (x = 0). The resulting A matrix for the linear state space
form ẋ = Ax + Bu can be seen in equation 3.26.
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A =



0 1 0 0
−1

MCms

−Rms

M

Bl

M
0

0
−Bl
Le

−Re −R2

Le

R2

Le

0 0
R2

L2

−R2

L2


(3.26)

Finally, the characteristic equation of the linearized system is found

det(λI−A) = s4 + k4s
3 + k3s

2 + k2s
1 + k1 (3.27)

where the coefficients of the characteristic polynomial are shown in below.

k1 = −R2

L2

(
R2

L3
e

(R2 +Re)
2 − Bl2R2

ML2
e

)
+

R2
2

L2Le

(
1

MCms

+
Bl2 +Rms(R2 +Re)

MLe

)
− R2

2

L2L2
e

(R2 +Re)

(
R2 +Re

Le

+
Rms

M

)
− R2

CmsL2LeM
(R2 +Re)

k2 =
R2

L2

(
1

MCms

+
Bl2 +Rms(R2 +Re)

MLe

)
− R2

2

L2Le

(
R2 +Re

Le

+
Rms

M

)
+
R2 +Re

MCmsLe

+
R2

2

L2L2
e

(R2 +Re)

k3 =
1

MCms

+
R2

L2

(
R2 +Re

Le

+
Rms

M

)
− R2

2

L2Le

+
Bl2 +Rms(R2 +Re)

MLe

k4 = 0

(3.28)

The resulting control law for the linear dynamics can be seen in equation 3.29, where
z dependency on x can be seen in equation 3.23 and w is the new input.

v = −k1z1 − k2z2 − k3z3 − k4z4 + w (3.29)

Obviously, this control law needs to be implemented before any amplification to the
loudspeaker. The desired amplification of the signal needs therefore to be multiplied with
the input w. Calculating the output u with the control law described above, results then
in the actual terminal voltage of the loudspeaker. The hardware needs therefore to be
calibrated so that the output u is amplified to its exact value.

Another consideration concerning the hardware is that the linear dynamics can be too
fast for the D/A converter. This does not have a harmful influence to the system but
rather it is unnecessary to have faster dynamics than the hardware can handle. Since the
poles can be chosen to represent the dynamics of the desired system it is easy to make the
system slower than previously stated. This is done simply be dividing the poles with a
common constant.

Now when the control law has been calculated and it is known that zero dynamics is
present in the system, the question left unanswered is, what is the zero dynamics of the
system. Since the zero dynamics cannot be seen in the output of the system, it is necessary
to make sure that it does not have harmful influence to the system.

The internal dynamics related to the input-output linearization is simply the derivative
of the choice of Ψ. This is shown below where Ψ̇ can be described by
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Ψ̇ = f(z1, z2, z3,Ψ) ⇐⇒ ż4 = f(z) (3.30)

In other words, this corresponds to the last row in equation 3.24 which was defined
linearly before for simplicity . The zero dynamics is then found simply be putting the
states z1, . . . , z3 to zero as described below. [SL91]

ż4|(0,0,0,z4) = f(0, 0, 0, z4) (3.31)

Putting the input w to zero ensures that the output always equal zero. This means
that the states z1, . . . , z3 are also equal to zero. Carrying out that calculation gives that
the zero dynamics are

ż4|(0,0,0,z4) =
R2(0)

L2(0)

−Bl(0)
dLe(0)
dx

(+)

−

√√√√(Bl(0)
dLe(0)
dx

)2

− 1
dLe(0)
dx

dL2(0)

dx
z24


− 1

L2(0)

(
R2(0) +

dL2(0)

dx

)
z4

(3.32)

which gives two solutions to the problem. Only one of them does though represent the
physical system, which was found to be the one with the minus sign.

A few approximations were though made to this system as described in Chapter 3.1.2
and since L2(x) was approximated to a constant, its derivative equals to zero. This sim-
plifies the analysis of the zero dynamics significantly, which can be seen with the approxi-
mation below.

ż4|(0,0,0,z4) = −R2

L2

z4 (3.33)

Since the constants R2 and L2 are positive the zero dynamics are clearly stable.

3.3 State estimation

Since full state feedback is required for the controller to work, a state estimation has to
be made. This is due to the restriction that all of the states can not be measured under a
normal working scenario. Two state estimation methods where implemented which both
have their advantages and disadvantages. Those two are the feed-forward state estimation
and the observer based state estimation.

3.3.1 Feed-forward state estimation

The feed-forward state estimation is much simpler than the other. It is not based on any
measurement, but simply, the loudspeaker model is used as reference. This means that
the only thing that is needed to do, is to take the input signal u and the state vector x̂
and calculate the new state vector x̂ as can be seen in equation 3.10. This is illustrated in
Figure 3.6.

The means to calculate the derivative was chosen to be the Runge-Kutta algorithm
of order 4. There are many means to numerically integrate the differential equation but
this was chosen since Runge-Kutta is assumed a good comprise between simplicity and
robustness [Bra92]. The performance varies greatly with the chosen value of the step
length h, so care must be taken to ensure stability of the algorithm.
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Figure 3.6: A diagram of the feed-forward system.

The advantages of using this method is that no additional setup is needed since this
is just applied to the input signal of the loudspeaker. The disadvantage is that it has
no means of correcting it self when it is faced with model errors. In other words, if the
loudspeaker model varies from the reality, the feed-forward state estimation will have no
means of correcting itself with respect to that difference.

3.3.2 Observer based state estimation

Due to the process noise vulnerability of the feed-forward state estimation, an observer
based one was also considered. There are many choices to consider here but the unscented
Kalman filter (UKF) was chosen for its alleged performance to estimate nonlinear systems.

Other observers where also considered, including its relative, the extended Kalman
filter. The unscented Kalman filter is though considered better if faced with strong nonlin-
earities and has little additional complexity since it does not have to compute the Jacobian
nor the Hessian of the model. [JS10]

To illustrate the observer role in the whole system, the figure of the observer based
system is shown below again for convenience. As can been seen the observer uses the input
u and the measured current x3 to estimate the states x̂.

w

Controller

- LD -
v

ID
u

- ẋ = f(x) + g(x)u

Loudspeaker

-
x

�
x3

UKF

Observer

x̂
z = T(x̂)

6 6

?

Figure 3.7: A diagram of the observer based system.

The unscented Kalman filter was implemented as described in Chapter 2.3. This is the
non-augmented version of the UKF which assumes that the noise is additive. It is simpler
than the augmented one, since it has a smaller number of sigma points of which it has to
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evaluate. This was chosen as a basis to start with, but no comparison was made with those
two in this case.

Like the feed-forward system discussed earlier, the integration of the differential equa-
tion as described in equation 3.10 needs to be calculated since the UKF makes use of the
loudspeaker model as well. As before, it was chosen to use the Runge-Kutta algorithm of
order 4 to carry out the calculation. This means that the stability of the observer is also
dependent of the chosen step length h.

Instead of the actual states, it is the sigma points which are propagated through the
loudspeaker model. As described in Chapter 2.3, those sigma points are used to estimate
the means and covariance of the states. How the UKF algorithm works in detail can be
seen in Chapter 2.3.

There are a number of options to tune the unscented Kalman filter based on the envi-
ronment in which it has to work in. To start with, it has the positive parameters α, β and
κ. The parameters α and κ control the spread of the sigma points where as β can be used
to incorporate prior information on the distribution of x. In other words, those parameters
control the weight matrices Wc and Wm which in turn decide how well the UKF captures
higher order movements of the loudspeaker model. [KFI08]

Much like its simpler relative, the Kalman filter, it has dedicated tuning parameters
for the covariance of the process noise Q and covariance of the measurement noise R.
Since the measurement noise can be assumed small when only measuring the current x3,
the covariance of the measurement noise R can also be chosen small. More significantly,
the covariance of the process noise Q has to be chosen as such to represent the difference
between the loudspeaker model and the real loudspeaker. Tuning only this parameter can
make a significant difference on the performance of the observer.

Like the Kalman filter, the initial guess for the mean m0 and the initial covariance
matrix P0 has to be chosen. In this case, this is considered a simple task since under no
stimulus the state values should be equal to zero. Similarly, the covariance matrix P0 can
be chosen small because of the little uncertainty.
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4 Results

The loudspeaker model, controller and state estimation were implemented in Matlab/Simulink
to validate the performance. Additionally, measurements were done on a real loudspeaker
for model and controller verification.

This chapter will first compare how well the loudspeaker model agrees with the loud-
speaker and then give an example of how the controller performs. Additionally, this chap-
ter will describe in detail how the system is affected by parameter variations for the two
different state estimation methods. Finally, the experimental results are given for the
feed-forward controller.

Human hearing perceive sound by listing for pressure changes in the channel medium.
As the pressure is produced by the acceleration of the cone, it will be the output vector of
which the results will be based on [Ben93].

4.1 Model verification

Since the moving coil loudspeaker is a nonlinear system it is quite difficult to analyze which
of the parameters are the ones responsible for the difference between the loudspeaker model
and the loudspeaker, assuming the model equations are accurate.

Because of this, it was decided to use the harmonics of the acceleration of the cone as
a measure of how well the model fitted the loudspeaker. For this purpose the loudspeaker
and the model was fed with a sinusoidal wave with different amplitude at its terminal to
measure the cone response.

In Simulink the model was also simulated under the same experimental conditions.
The loudspeaker model was simply fed with a sinusoidal wave with different amplitudes to
simulate the terminal voltage and then the acceleration was saved before it was integrated
to the cone velocity, x2. As described earlier in Chapter 3.1.2 the parameters for the
loudspeaker was given by Klippel’s measurement service and the nonlinear parameter was
then fitted to the kernel functions described in Chapter 3.1.2.

To keep the comparison as accurate as possible the same loudspeaker was used for the
experimental case. To acquire the cone response for the experimental measurement required
a little more elaborate equipment. To get the corresponding data from the loudspeaker
a sinusoidal wave was fed from a signal generator via an amplifier to the loudspeaker.
An oscilloscope was used to calibrate the terminal voltage to the desired amplitude. To
measure the cone response, a laser doppler vibrometer (LDV) was used to measure the
velocity of the cone. It automatically provides the derivative of the data to yield the
acceleration. To acquire the more interesting part of the measurement a Hanning window
was used as well as a low-pass filter [win10].

The measurements and simulation can be seen in Figure 4.1. The plots are divided into
multiples of the fundamental frequency dependent on the frequency for different terminal
voltage. The the first 5 multiples of the fundamental were selected to serve as a results
since it must obviously be limited to a finite number and the higher order harmonics were
barely noticeable.

In Figure 1.1 an illustrated explanation can be seen of what harmonic distortion is. A
more detailed description is though that the n:th order harmonic distortion of the funda-
mental frequency f1 is defined as

HDn =
|Pn|
P1

· 100% (4.1)

where Pn is the rms sound pressure at the n:th harmonic and P1 is the rms-value of the
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Figure 4.1: The harmonics of the loudspeaker model and the loudspeaker when fed with
sinusoidal wave with different amplitudes.
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Figure 4.2: The harmonic difference between the loudspeaker model and the loudspeaker
when fed with sinusoidal wave with different amplitudes.
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fundamental frequency. A more common method for measuring HD and THD in audio
application is to use the (T)HD-N definition as given by the IEC standard 60268-5 [iec03].

Since this work focuses solely on the harmonics and its sources this standard was
considered not suitable.

In Figure 4.1 the harmonic distortion is shown for the measured and simulated loud-
speaker and in Figure 4.2 the difference between them are shown. As can be seen, the
difference increases considerably when the terminal voltage is increased. This is due to the
fact that the cone excursion increases considerably as well which increases the possibility
of the nonlinear function error. In Figure 4.1 it can also be seen how much the harmonics
increases below the resonance frequency, which is 63,1 Hz. Over the resonance frequency
the harmonics are considerable less which is consistent for both the simulated and mea-
sured loudspeaker. It should also be noted what looks likes a faulty measurement for 80
Hz 5V which is shown clearly in Figure 4.2.

In Figure 4.1 it can also be seen how much larger the odd order harmonics are than
the even order. This can be seen clearly for the 2:nd and 3:rd order harmonics. This
indicates that the symmetrical nonlinearities are much stronger than the asymmetrical
for the loudspeaker [Kli06]. This is consistent for both the loudspeaker model and the
loudspeaker.

All in all, the difference between the loudspeaker model and the loudspeaker should be
considered significant even though they are able to show similar behavior. This difference
increases with larger terminal voltage or in other words with larger cone excursion.

4.2 Parameter sensitivity

Similarly as above, the total harmonic distortion (THD) is the sum of all harmonic compo-
nents divided with the fundamental. Since a linear system will produce no harmonics when
fed with a sinusoidal wave, this definition will serve well to explain the overall performance
of the nonlinear system. The equation for the THD can be seen below.

THD =

√√√√ N∑
i=2

|Pi|2

P1

· 100% (4.2)

To find out how sensitive the system is to parameter variation a number of simulations
were done were the system was fed with sinusoidal wave with different amplitude and
frequency. Those simulations were done using the system with the LD controller poles
divided with a common factor equal to 1000. This was done since the system otherwise
takes a very long time to simulate but will also serve to simulate a limitation on the
hardware.

The structure for this simulation were that every loudspeaker parameter was varied
between -15% and 15% but kept constant in the controller. The maximum and minimum
THD for those simulations can be seen in Figure 4.3. The reason for varying the param-
eters between -15% and 15% is that some parameters showed to be much more sensitive
when overestimated than underestimated and likewise other parameters showed to be more
sensitive the other way around.

4.2.1 Feed-forward state estimation

In Figure 4.3 the THD for the loudspeaker parameter variation can be seen as a function
of the terminal voltage for a number of frequencies. In the left column the nonlinear
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parameters can be seen and in the right the loudspeaker constants. As can be seen for
the nonlinear functions, it’s the force factor Bl which has the most effect of causing THD
for all frequencies. The suspension compliance Cms has also large effect but it decreases
considerably with increasing frequency. The voice coil inductance Le causes on the other
hand quite small effect but can be seen increasing for higher frequencies.

For the loudspeaker constants it can be seen that it is the cone mass M which has the
largest effect of causing THD. The suspension mechanical resistance Rms does also cause
large effect for very low frequencies but does decrease rapidly for increasing frequencies.
The voice coil resistance Re does on the other hand have small effect for lower frequencies
but increase rapidly for higher frequencies.

Since the poles of the LD controller was divided with a common factor it causes the
controller to behave slower than optimal. This causes the controller to never be able to
fully get rid of all harmonics, even though it does reduce them significantly. This can be
seen as the minimum value plots in Figure 4.3. Another aspect to the minimum values
is that many of them are not found for zero variations. In other words, when there is no
variation between the controller parameters and the loudspeaker. This can be explained
and was verified to be because some of the parameter changes were causing the loudspeaker
to have more linear behavior.

Another thing that is common for all of the loudspeaker parameters is that the THD
is considerably larger for lower frequencies than higher.

4.2.2 Observer based state estimation

Results similar to the feed-forward case can be seen in Figure 4.4 for the observer based
system. This was expected since it is still the same parameters which has the largest effect
on the system.

The simulations for the observer based system were done using the same tuning pa-
rameters. Acceptable settings were found for the UKF by a series of simulations. Those
common settings were used for all parameter variation simulation. Those settings showed
to be acceptable for most of the parameters but on the other hand, one can notice consider-
able lack of performance for the voice coil resistance Re in comparison to the feed-forward
case. The reason for this performance degradation was found to be because of the covari-
ance matrix Q, as the optimal values for the covariance matrix was not the same for Re as
it was for the rest of the parameters. One could though find common settings which gave
excellent performance for all parameters, although not optimal for all. It will though not
be shown here.

If Figures 4.3 and 4.4 are compared, one can see that the observer based system performs
better for low frequencies but the difference tends to decrease for higher frequencies.
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Figure 4.3: THD simulated with parameter variation for the feed-forward system.
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Figure 4.4: THD simulated with parameter variation for the observer based system.
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4.3 Controller performance

To get an understanding of how well the observer based and feed-forward system performs,
a series of simulations were done. As before the stimulus is a sinusoidal wave with a different
amplitude and frequency and the poles of the LD controller is divided with a common
factor equal to 1000. First the observer and feed-forward system will be evaluated without
process noise. That is, how well the system works if the parameters in the controller match
with those in the loudspeaker. Secondly, processes noise were added and the observer and
feed-forward system performance compared to the loudspeaker without controller.

4.3.1 Not affected by process noise

In Figure 4.5, one can see how the controller perform in comparison with the loudspeaker
without controller. As can be seen the observer based and the feed-forward estimator
perform identical for all simulation. This was expected since without process noise present,
both the state estimators should perform identically. Since the poles of the LD controller
were divided with a common factor, the controller is made slower than optimal. This can
be seen on the plots as the controller is not able to suppress the THD to zero. It does
though come close to zero which is considered good performance.

Looking at the plots, one can see the THD difference between the controlled and un-
controlled system. As can be seen the difference is substantial for the lower frequencies
but decreases with higher frequencies. Since the loudspeaker performs better for higher
frequencies this is quite expected. More interestingly, one can see how well the controlled
system is able to perform even for large cone excursion.

In Figure 4.6 it can be seen how the controller affects the rms value of the power
at the loudspeaker terminal. This is interesting since one need to make sure that the
dedicated amplifier is able to dispatch the power which the controller specifies. More over,
the loudspeaker physical limits can not be exceeded either. In other words, one need to
make sure that the dispatched power does not harm the loudspeaker.

As can be seen in the figure, the least power is needed when the loudspeaker is operating
near its resonance frequency, which is 63,1 Hz. Over its resonance frequency, no more power
seems to be needed than without controller which is understandable since with increasing
frequency, the HD does decrease substantially. More interesting, is the lower frequencies
under its resonance frequency. There, as can be seen in Figure 4.1 the HD does increase
with lower frequencies which in turn requires more control signal activity. This can be seen
as increasing power for the controller in Figure 4.6.

Since the loudspeaker model is quite asymmetrical, a substantial power is needed to
achieve the same cone excursion in negative direction compared to the positive one. This
can be seen as quite high power requirements for 40 Hz and 10 V.

4.3.2 Affected by process noise

In Figure 4.7 it can be seen how the process noise affects the observer based and the
feed-forward system. To simulate the process noise all of the loudspeakers parameters
were varied manually. This was done to try to simulate real variations in the loudspeaker.
Moreover, the parameter constants were varied so that the ones that is estimated to be
hard to measure were varied more than the others. The nonlinear functions were changed
so that they would behave similar to the ones in the controller but still have their own
properties. This is different from what was done in Chapter 4.2 where the whole function
was offset with the same constants. To do this, new points were simply fitted to the same
kernel functions.
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Figure 4.5: THD for the system without process noise.
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Figure 4.6: Prms at the loudspeaker terminal when not affected by process noise.
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Those simulations were done for a number of systems as can be seen in Figure 4.7.
The loudspeaker without controller plots show how the THD values of the driver without
a controller are affected by increasing terminal voltage and frequency. Similarly, the feed-
forward system plots show how the driver with the feed-forward controller performs for the
same terminal voltage and frequency.

Three different simulations were done for the observer based system. The difference
between them is how the values for the covariance of the process noise Q were chosen. The
Q 60 Hz one, were chosen so that the observer based system would be optimized for 60
Hz. In other words, the Q matrix was chosen so that the THD would be kept at minimum
for 60 Hz and then the simulation for other frequencies were done with the same Q values.
Identical to that, the same were done for 180 Hz which are shown in the plots as Q 180 Hz.
The Q standard one, is the same Q matrix which was used in the parameter sensitivity
simulation.

As can be seen in Figure 4.7, the standard Q observer and the feed-forward system
have almost identical results. For low frequencies they are both able to reduce the THD
considerably of which the difference increases with the terminal voltage. As one could have
guessed, the observer based system with Q values optimized for 60 Hz performs excellent
for low frequencies but its performance does worsen for higher frequencies. Similarly, the
observer based system with Q values optimized for 180 Hz performs best of the controllers
for higher frequencies but worst for the lowest ones. As one can see, the values chosen for
the Q matrix does have significant effects on the results.

Another interesting aspect is that, here, the process noise can be said to be extensive
since none of the controllers performs well at higher frequencies. In fact, the controllers
performs destructively at higher frequencies for this certain type of process noise. This
was though estimated to be the case and does in effect prove that a considerable accurate
loudspeaker model is necessary for the controller to have positive effect for every situation.

4.4 Controller experimental results

A few experiments was performed to measure the feed-forward controller performance.
The reason for that only the feed-forward system was measured was that the experimental
setup is much simpler than for the observer based system. This is because the observer
based system requires a feedback loop and a dedicated hardware which can handle the
real-time performance demand.

Since the feed-forward system requires no feedback it was possible to evaluate its per-
formance. The experimental setup which was used was identical to the one described in
Chapter 4.1 except for the sound source which was an external sound card connected to a
laptop. As before the amplification needed to be calibrated for the terminal voltage to be
correct.

To carry out the experimentation, the feed-forward system was then simulated in
Simulink for the estimated loudspeaker parameters and the control signal u recorded. The
control signal was then played from Matlab through the external sound card.

The results from those experimentations were quite inconclusive. For a certain terminal
voltage and frequency it was possible to suppress the third order harmonic somewhat but
on the other hand a noticeable gain could be seen for the second order harmonics.
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Figure 4.7: THD for the system when affected by process noise.
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5 Discussion

As were found in Chapter 4.2 the loudspeaker parameters do affect the linearity differently.
The results for the nonlinear function are in agreement with results in other literature. That
is, it is the force factor Bl and the suspension compliance Cms which has the largest effect.
Interestingly, for this loudspeaker model, the suspension compliance Cms does effect the
THD only for very low frequencies. The voice coil inductance Le, did on the other hand
only have marginal effect in comparison to the other two. Studies have though shown
that voice coil inductance does also have current dependency [Kli06]. What this means
is that, if an IMD analyze is done one could see that voice coil inductance Le is able to
cause considerable IMD if a high frequency tone (> 1000 Hz) is played together with a
low frequency one. Since this work did only focus on the loudspeaker working in the low
frequency range, no simulation were done to verify this.

The observer based system is able to give better performance than the feed-forward
system. It does though require considerable effort to tune the unscented Kalman filter to
give optimal performance for the desired frequency range and cone excursion. As this is
the case, one might guess if it wouldn’t be more effective to put that effort in modelling
the process noise directly in the model and utilize the augmented version of the UKF.
This requires that an analysis of the difference between the loudspeaker model and the
loudspeaker needs to be carried out. Also, since the UKF done in this work is a non-
augmented version which assumes that the noise is additive, it does need to be changed to
a augmented one.

There are other possibilities of modelling the moving coil loudspeaker as well. This
includes Volterra series, which do allow for an easy model fitting. On the other hand, the
complexity of such a model would be substantial if one would like to suppress more than
two harmonics and as such it was not considered as a viable option. Also, any feedback
other than the defined output could not be used to give correction to the model. Since
this is the case, it is believed that a physical loudspeaker model should be preferred over
a generic one.
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6 Conclusions

As stated above, the controller is very sensitive to model errors. If the model error is too
large it could render the controller destructive. On the other hand, if the loudspeaker
model is accurate the controller does deliver excellent performance. It is possible to use
an observer to compensate for small parameter variation but it does require some tuning
of the unscented Kalman filter to get it to be optimal. Since some parameter variations
are expected because of temperature dependency, aging and batch differences, a correct
loudspeaker model should be striven for nonetheless. In other words, the UKF could help
minimizing the effects of those parameters variations which could be difficult to model.

Since it was found that the observer based and feed-forward system had similar param-
eter sensitivity, it could be guessed that those parameters affect any feedback system the
same. Obviously, one should try to model the parameters which has the greatest effect
most accurately.

To be able to fully suppress the harmonic distortion it is necessary to have fast sampling
frequency. That is, since the high frequency dynamics are depended on the sampling
frequency, it can affect the controller ability to fully suppress the harmonic distortion.
One important factor which could easily be overlooked is the step length of the Runge-
Kutta algorithm in the controller. It was found that it could make the system unstable if
chosen large enough. This parameter is though dependent on the sample frequency.

It should be noted that the loudspeakers physical properties do have their limits. That
is the control signal power needed to make the loudspeaker linear for very low frequencies
and large excursion can easily be enough to destroy the loudspeaker. When operating at
low frequencies and large excursion the necessary power should also be deliverable from
the amplifier. The loudspeaker model used in this work did though prove to be quite
asymmetrical which put large stress on the control signal activity.

As stated before, the difference between the loudspeaker model and the loudspeaker
were substantial. Since this work did not address the issue of measuring the loudspeaker,
the results of why this difference occurs will remain inconclusive. In other words, if it would
have been possible to include the model fitting in this work it would be possible to say how
accurate it is in reality. One could though question if the accuracy of the terminal voltage,
which was one decimal, were accurate enough. As well could one question the linearity of
the amplifier, even though it was estimated that it would be negligible in comparison to
the loudspeaker.
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7 Future Work

Since this project was mostly focused on simulations, understandably it remains to verify
and test most of the work described above. This chapter will try to list what is needed to
be tested and suggest how the system can be extended to give a better performance. First,
a few suggestions are given for how the loudspeaker model can be extended and secondly
the same will be done for the observer.

7.1 Loudspeaker model work

The correctness of the loudspeaker model is the most important factor for the performance
of the controller. Because of this, a few suggestion will be made of how the loudspeaker
model can be more accurately fitted to a given loudspeaker.

First of all, it is possible to physically measure most of the nonlinear functions and
constants. This does though involve some extensive lab work and disassembly of the
loudspeaker.

Secondly, the loudspeaker model can be fitted to the given loudspeaker by measuring
its external signals. This includes the terminal voltage, current, displacement and velocity.
With these signals accurately known, the loudspeaker model can be fitted with common
mathematic tools.

Thirdly, the loudspeaker model could possibly be fitted by a learning algorithm by
measuring the harmonic distortion with a microphone. This of course, would require some
good initial guess of the nonlinear functions but could possibly be done if the constants
were known. This process obviously needs to be automated.

Besides fitting the existing model as well as possible, some extension could be made
to better follow some other variations in the loudspeaker. As described in Chapter 3.1.2,
this project omitted the thermal effects of the loudspeaker. As it is known that the heat-
ing of the voice coil does impact some of the parameters it is suggested that this should
be modeled. The most significant parameter in this case is probably the voice coil resis-
tance. Equation 7.1 shows how it can be extended to include the voice coil temperature
Tv [BSA95].

Re(Tv) = Re(T0)(1 + α(Tv − T0)) (7.1)

where α = 4, 33 · 10−3K−1 for copper. It could be difficult to measure the voice coil
temperature but it should be possible to estimate it since the terminal voltage is known
and the current either estimated or measured.

It is expected that the voice coil inductance Le, has a weak nonlinear dependency on the
current i [Kli06]. This could be incorporated into the loudspeaker model and investigated
more detailed with IMD analyses.

The three major nonlinearities could also be extended to include the thermal effects.
Most interestingly would probably be the suspension compliance Cms since it is the one
which varies the most with the temperature [Age07].

Another interesting extension could be to make the eddy current parameter R2 and L2

nonlinear in the model. It is known that they are weakly nonlinear for a common moving
coil loudspeaker but if equipped with ”shorting rings” it could be necessary to describe
them more accurately. [DKOB04]
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7.2 Observer work

One of the most obvious suggestion regarding the observer state estimation is that it should
be implemented, verified to work and to be stable. Optimizing the UKF tuning parameters
should also be of interest to get the most out of the observer. Other types of UKF, for
example, the simplex UKF or the spherical UKF could be tried out if less computational
effort is desired [Sim06].

A few extensions can made here as well. One of them is to make the UKF augmented,
that is to assume that the noise is not additive. For example, the voice coil resistance
can be multiplied with a constant which represent the process noise which is not currently
modeled. This will allow the UKF to better estimate the states since the noise sources are
more accurately implemented in the UKF. This, of course requires that it should be tested
where the larges discrepancies are but a good initial guess could be the Re and Cms since
it is known that they vary the most with time.

Another extension could be to make the unscented Kalman filter MIT-rule-based (MIT-
AUKF) or make a master-slave UKF (MS-AUKF), which is based on two Kalman filters.
Those two are both adaptive in the sense that they are able to change the covariance
of the process noise Q over time. By doing this, slowly varying discrepancies could be
compensated for more accurately. As described in Chapter 3.3.2, the covariance of the
process noise Q is the parameter which affects the UKF the most in this case. To have it
automatically adapt over time should therefore be of interest.[HSH09]
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Appendix

The measurement setup used to measure the loudspeaker is given below.

FFT

Bandwith: 1,25 kHz
From: 0 kHz
To: 1,25 kHz
FFT lines: 1600
Sample frequency: 3,2 kHz
Sample time: 1,28 s
Resolution: 781,3 mHz
wFFT window: Hanning
LP filter cut-off: 1,2 kHz

Table 7.1: Expermental setup

The instruments used to measure the loudspeaker are listed below.

Instruments

Laser scanning head: Polytec OFV 056 Vibrometer scanning head SN: 6001881
Vibrometer controller: Polytec vibrometer controller OFV 3001 S Cert N: 5001550
Junction box: Polytec Junction box PSV-Z-040
Signal source: EDIROL UA-101 24bit TA NR: Re23
Oscilloscop: Fluke 123 Scopemeter
Amplifier: NAD series 20 sterio amplifier 3020 TA NR: Po 9

Table 7.2: Lab instruments
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